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Set-up

. global folder 3
. set linesize 80

Commentary

In the following answers, the code and full Stata output are provided together with the answers. The
full Stata output was not required in the given answers, but is given here to show how the answers were
found.

Some brief comments are warranted on presentation. First, when the question asks for specific results,
then those results should be presented separately in text, rather than only presenting the output from
the statistical package. Second, the choice of non-proportional fonts makes it difficult to read output
from the statistical package. Third, using colours in the graphics makes it difficult to discern which line
is which in black-and-white printout. I suggest that using scheme (s2mono) would be useful for graphics
in Stata.

Part 1

Question 1

We read in the dataset:

. import delimited "http://biostat3.net/download/exams/2016/$folder/incidence.c
> sv", clear

(6 vars, 360 obs)

. egen agecat = cut(age), at(40, 50, 60, 70, 80, 90)

We then fit a Poisson regression with the number of lung cancer cases at the outcome (first argument),
with the person-time of exposure as the exposure option. We include attained age as a linear, continuous
effect in each model.

. poisson lc sex age, exposure(pt) nolog irr

Poisson regression Number of obs = 360
LR chi2(2) = 480.18
Prob > chi2 = 0.0000
Log likelihood = -839.46342 Pseudo R2 = 0.2224
lc | IRR Std. Err. z P>|z| [95% Conf. Intervall
_____________ A e e
sex | 2.08734  .1991786 7.71  0.000 1.731289 2.516615
age | 1.09231 .0046702 20.65 0.000 1.083195 1.101502
_cons | 2.05e-06 5.71e-07 -46.93 0.000 1.18e-06 3.54e-06

In(pt) | 1 (exposure)



. poisson lc smoking age, exposure(pt) nolog irr

Poisson regression Number of obs = 360
LR chi2(2) = 1246.46
Prob > chi2 = 0.0000
Log likelihood = -456.32451 Pseudo R2 = 0.5773
lc | IRR Std. Err z P>|z]| [95% Conf. Intervall
_____________ e e
smoking | 18.28866  2.285509 23.26  0.000 14.31557 23.36445
age | 1.097374 .0047483 21.47  0.000 1.088107 1.10672
_cons | 4.71e-07 1.39e-07 -49.15 0.000 2.63e-07 8.41e-07

1n(pt) | 1 (exposure)

. poisson lc asbestos age, exposure(pt) nolog irr

Poisson regression Number of obs = 360
LR chi2(2) = 499.97
Prob > chi2 = 0.0000
Log likelihood = -829.57149 Pseudo R2 = 0.2316
lc | IRR  Std. Err. z P>|z]| [95% Conf. Intervall
_____________ o e
asbestos | 3.211326 .3645096 10.28 0.000 2.57079 4.011457
age | 1.091717 .0046637 20.54 0.000 1.082614 1.100896
_cons | 2.77e-06 7.52e-07 -47.17  0.000 1.63e-06 4.71e-06

In(pt) | 1 (exposure)

The age-adjusted incidence rate ratio for sex is 2.09 (95% confidence interval (CI): 1.73, 2.52). This
association is highly significant (p < 0.001).

The age-adjusted incidence rate ratio for smoking is 18.29 (95% confidence interval (CI): 14.32,
23.36). This association is highly significant (p < 0.001).

The age-adjusted incidence rate ratio for asbestos is 3.21 (95% confidence interval (CI): 2.57, 4.01).
This association is highly significant (p < 0.001).

We could have adjusted for attained age in several other ways, including quintiles or splines. To
investigate this, we first use quintiles with sex:

. xtile ageQ5 = age, nquantiles(5)
. poisson lc sex i.ageQ5, exposure(pt) nolog irr base

Poisson regression Number of obs = 360
LR chi2(5) = 463.06
Prob > chi2 = 0.0000
Log likelihood = -848.02325 Pseudo R2 = 0.2145
lc | IRR  Std. Err. z P>|z| [95% Conf. Intervall
_____________ o
sex | 2.07351 .1978415 7.64 0.000 1.719846 2.499899

|

ageQ5 |

1] 1 (base)

2 | 2.342366 .3938663 5.06 0.000 1.684714 3.256742
3 | 5.684055 .8926171 11.07  0.000 4.178175 7.732678
4 | 12.58007 1.972089 16.15  0.000 9.252228 17.10488



15.80467  3.322519 13.13 0.000 10.46749 23.86318

|
|
_cons | .0000916 .0000136 -62.76 0.000 .0000685 .0001225
| 1 (exposure)

This shows a very similar point estimate and standard errors to modelling attained age as a linear,
continuous effect. We also investigate using restricted cubic splines:

. mkspline ageSpline = age, cubic nknots(4)
. poisson lc sex ageSpline*, exposure(pt) nolog irr base

Poisson regression Number of obs = 360
LR chi2(4) = 485.97
Prob > chi2 = 0.0000
Log likelihood = -836.5696 Pseudo R2 = 0.2251
lc | IRR  Std. Err. z P>|z| [95% Conf. Interval]
_____________ e e
sex | 2.081729 .1986431 7.68 0.000 1.726635 2.509849
ageSplinel | 1.114283 .0236987 5.09 0.000 1.068789 1.161713
ageSpline2 | .9824903 .0612319 -0.28 0.777 .8695183 1.11014
ageSpline3 | .967742 .170512 -0.19 0.852 .6851435 1.366903
_cons | 7.29e-07 7.60e-07 -13.57 0.000 9.47e-08 5.62e-06

1n(pt) | 1 (exposure)

Again, this shows a very similar point estimate and standard errors to modelling attained age as
a linear, continuous effect. I accepted answers using any of quintiles, linear/continuous age, splines or
similar functional forms.

In summary, lung cancer incidence is associated with age, sex, asbestos exposure and current smoking
exposure.

Question 2

We now adjust for age, sex, smoking exposure and asbestos exposure in the same model.

. poisson lc age sex smoking asbestos, exposure(pt) nolog irr

Poisson regression Number of obs = 360
LR chi2(4) = 1343.01
Prob > chi2 = 0.0000
Log likelihood = -408.05264 Pseudo R2 = 0.6220
lc | IRR  Std. Err. z P>|z]| [95% Conf. Intervall
_____________ A o e e e
age | 1.099109 .00478 21.73 0.000 1.08978 1.108518
sex | 1.415325 .1366372 3.60 0.000 1.171332 1.710142
smoking | 17.5566566  2.203587 22.83 0.000 13.72783 22.45312
asbestos | 3.061346  .3502517 9.78 0.000 2.446389 3.830886
_cons | 3.11e-07 9.48e-08 -49.11 0.000 1.71e-07 5.65e-07

1n(pt) | 1 (exposure)

. est store ModelA

This shows clearly that each of attained age, sex, smoking and asbestos exposure are significantly
associated with lung cancer incidence (p < 0.001 for all adjusted effects). The adjusted rate ratio (RR)



for age was 1.099 (95% CI: 1.090, 1.109) per year of age, indicating a rapid rise with increasing age.
Males have higher rates of disease even after adjustment for other covariates (RR=1.42, 95% CI: 1.17,
1.71). Smoking is strongly associated with lung cancer incidence (RR=17.56, 95% CI: 13.73, 22.45).
Finally, asbestos exposure has a rate ratio of 3.06 (95% CI: 2.45, 3.83).

Empirical evidence for confounding can be assessed in several ways. First, we can assess whether
exposure to smoking and asbestos are associated:

. tab smoking asbestos [aw=pt], row

oo +
| Key |
- - |
| frequency |
| row percentage |
S +

| asbestos

smoking | 0 1] Total

___________ O SO

0 | 253.08739 19.980209 | 273.0676

| 92.68 7.32 | 100.00

___________ B SO

1 | 80.232149 6.7002514 | 86.932401

| 92.29 7.71 | 100.00

___________ O SO

Total | 333.31954 26.6804603 | 360

| 92.59 7.41 | 100.00

We see that the prevalence of exposure to asbestos is similar or slightly lower among never smokers
(7.3%) and current smokers (7.7%). We are not able to undertake a formal statistical test with these
weighted and aggregated data.

Second, we can assess whether the estimated associations between lung cancer incidence and each
of smoking and asbestos change after an adjustment for other covariates.

Comparing the linear age-adjusted model with the main effects model, we see that the rate ratio
for asbestos changed from 3.21 to 3.06 (5% reduction), and the rate ratio for smoking changed from
18.45 to 17.63 (4% reduction). Again, there is limited evidence for confounding between smoking and
asbestos.

Question 3

(a)

A regression model formula is

log(A(t|z)) = o+ Brage + Pol(sex = 1) + B3I (smoking = 1) + B41(asbestos = 1) +
BsI(smoking = 1 & asbestos = 1)

where A(t|z) is the rate at attained age t given covariates = (including sex, smoking and asbestos), with
coefficients By, 51, B2, B3, B4 and S5, and I(test) is 1 if the test is true and 0 if the test is false.

(b)

We now fit the interaction model:

. poisson lc age sex smoking##asbestos, exposure(pt) nolog irr

Poisson regression Number of obs = 360
LR chi2(5) = 1344.29
Prob > chi?2 = 0.0000
Log likelihood = -407.41304 Pseudo R2 = 0.6226



1lc | IRR Std. Err. z P>|z| [95% Conf. Intervall
_____________ o e
age | 1.099051 .0047794 21.72 0.000 1.089724 1.108459
sex | 1.413915 .1364279 3.59 0.000 1.170284 1.708265
1.smoking | 18.91174 2.722219 20.42 0.000 14.26286 25.07588
1.asbestos | 4.05215 1.07547 5.27 0.000 2.408632 6.817114
|
smoking#|
asbestos |
11 | .7131929 .2091806 -1.15 0.249 .4013731 1.26726
|
_cons | 2.93e-07 9.10e-08 -48.40 0.000 1.59e-07 5.38e-07
1n(pt) | 1 (exposure)
. est store ModelB
. lrtest ModelA ModelB
Likelihood-ratio test LR chi2(1) = 1.28
(Assumption: ModelA nested in ModelB) Prob > chi2 = 0.2580

Comparing Model A with Model B, we see that there is little evidence for a statistical interaction
on a multiplicative scale. First, we note that the Wald test for the interaction term has a p-value of
0.25. Second, we see that the likelihood ratio test is also not significant, with p = 0.26.

(c)

From Model B, we can calculate the incidence rate for a males aged 62 years who has been exposed to
asbestos and is a current smoker using several approaches. We can calculate the rate from the regression
estimates, however we need to take account of the covariance terms to calculate the confidence interval,
which is best done using tools provided by each statistical package. Using the lincom command:

. quietly poisson lc age sex smoking##asbestos, exposure(pt) nolog irr
. lincom sex + 1.smoking + 1.asbestos + 1.smoking#l.asbestos + 62*age + _cons,
> irr

(1) 62*[1clage + [lclsex + [lc]l.smoking + [lc]l.asbestos +
[1c]1.smoking#1l.asbestos + [lc]_cons = 0

1lc | IRR Std. Err. z P>zl [95% Conf. Intervall

1 .007901 .0009099 -42.03 0.000 .0063046 .0099017

This shows that the incidence rate is 7.90 (95% CI: 6.30, 9.90) per 1000 person-years.
We could also do this analysis with the predict and margins command.

Part 2

Question 4
We read in the data using the following:

. display "Folder = $folder"

Folder = 3

. import delimited "http://biostat3.net/download/exams/2016/$folder/survival.cs
> v", clear

(8 vars, 486 obs)



(a)

This question is equivalent to completing Table I for a randomised controlled trial to assess whether
randomisation led to balanced covariates. We use simple tests to assess whether treatment assignment
varies substantially by age at diagnosis, sex, smoking exposure and asbestos exposure.

For age at diagnosis, we can use either a t-test or a non-parametric test:

. ttest age, by(tx)

Two-sample t test with equal variances

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
_________ A o e
0 | 246 63.33455 .6152337 9.649563 62.12273 64.54638
1| 240 62.19994 .6665995 10.32692 60.88678 63.5131
_________ o e
combined | 486 62.77425 4534106 9.995621 61.88336 63.66514
_________ A o e
diff | 1.134616 9063606 -.646271 2.915504
diff = mean(0) - mean(1) t = 1.2518
Ho: diff =0 degrees of freedom = 484
Ha: diff < O Ha: diff !'= 0 Ha: diff > O
Pr(T < t) = 0.8944 Pr(IT| > [t]) = 0.2112 Pr(T > t) = 0.1056

. ranksum age, by(tx)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

tx | obs rank sum expected
_____________ o
| 246 61571 59901

1 240 56770 58440
_____________ e
combined | 486 118341 118341

unadjusted variance 2396040.00
adjustment for ties 0.00

adjusted variance 2396040.00

Ho: age(tx==0) = age(tx==1)
1.079
0.2806

z
Prob > |z]|

We find no evidence that age differs by treatment modality (p = 0.21 for the t-test and p = 0.28 for
the Wilcoxon test). For the other variables:

. tab tx sex, chi row

S +
| Key |
R e e EE LT |
| frequency |
| row percentage |
S +
| sex
tx | 0 1] Total



___________ Y SO
0 | 88 158 | 246
I 35.77 64.23 | 100.00
___________ Ot E
1] 80 160 | 240
| 33.33 66.67 | 100.00
___________ R SO
Total | 168 318 | 486
| 34.57 65.43 | 100.00
Pearson chi2(1) = 0.3195 Pr = 0.572
. tab tx smoking, chi row
O +
| Key |
[-=mmmm - |
| frequency |
| row percentage |
O +
| smoking
tx | 0 1] Total
___________ R SO
0 | 44 202 | 246
| 17.89 82.11 | 100.00
___________ St E
1] 32 208 | 240
| 13.33 86.67 | 100.00
___________ Y SO
Total | 76 410 | 486
| 15.64 84.36 | 100.00
Pearson chi2(1) = 1.9088 Pr = 0.167
. tab tx asbestos, chi row
O +
| Key |
[-=mmm - |
| frequency |
| row percentage |
S +
| asbestos
tx | 0 1] Total
___________ O SO
0 | 194 52 | 246
| 78.86 21.14 | 100.00
___________ B SO
1] 195 45 | 240
| 81.25 18.75 | 100.00
___________ O SO
Total | 389 97 | 486
| 80.04 19.96 | 100.00
Pearson chi2(1) = 0.4337 Pr = 0.510

We find little evidence that randomisation varied by sex (p = 0.57), by smoking (p = 0.17) or by
asbestos exposure (p = 0.51). We could check for potential confounding by sex in the survival analysis.



(b)

We stset the data using time since diagnosis as the primary time scale and then plot the Kaplan-Meier
curves

stset tsurv, failure(event) id(id)

id: id
failure event: event != 0 & event <
obs. time interval: (tsurv[_n-1], tsurv]
exit on or before: failure

486 total observations
0 exclusions
486 observations remaining, representing
486 subjects
424 failures in single-failure-per-subject data
583.8291 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 5

sts graph, by(tx) name(kml, replace) scheme(s2mono)

failure _d: event
analysis time _t: tsurv
id: id

. graph export exam_2016_kml.eps, name(kml) replace
(file exam_2016_kml.eps written in EPS format)
. * the following line is only needed on Linux

'l convert -density 300 exam_2016_kml.eps exam_2016_kml_$folder.png

sts test tx

failure _d: event

analysis time _t: tsurv
id: id

Log-rank test for equality of survivor functions

| Events Events
tx | observed expected
______ A o e
0 I 210 239.11
1 | 214 184.89
______ B,
Total | 424 424 .00
chi2(1) = 8.16
Pr>chi2 = 0.0043

sts list, by(tx) at(1 2 3 4 5)

failure _d: event

analysis time _t: tsurv
id: id

Beg. Survivor Std.



Time Total Fail Function Error [95% Conf. Int.]

tx=0
1 104 141 0.4231 0.0316 0.3607 0.4842
2 67 36 0.2739 0.0286 0.2194 0.3311
3 47 17 0.2021 0.0259 0.1539 0.2549
4 38 8 0.1663 0.0242 0.1221 0.2165
5 29 8 0.1303 0.0221 0.0909 0.1770
tx=1
1 70 167 0.3001 0.0298 0.2431 0.3591
2 45 23 0.1997 0.0262 0.1511 0.2531
3 36 8 0.1628 0.0244 0.1184 0.2134
4 21 15 0.0930 0.0195 0.0594 0.1356
5 18 1 0.0884 0.0190 0.0557 0.1302

Note: survivor function is calculated over full data and evaluated at
indicated times; it is not calculated from aggregates shown at left.

Kaplan—-Meier survival estimates

0.50 0.75 1.00

0.25

0.00

The Kaplan-Meier curves show that survival is poor for lung cancer patients, with fewer than 25%
of patients surviving to 5 years. We also see that treatment with chemotherapy+radiotherapy leads to
more deaths soon after diagnosis. It is unclear whether the rates or hazards are different after one year.

Although not specifically asked for, we also (i) used the log-rank test to compare the curves, finding
strong evidence for a difference (p = 0.004) and (ii) estimated survival to five years, where 13% (95%
CI: 9, 18) survived for those on conventional treatment and 9% (95% CI: 6, 13) survived for those on
chemotherapy+radiotherapy.

Question 5

Based on Question 4 (a), we first investigated whether age and sex were associated with survival and
hence would be potential confounders:

. stcox tx sex age, nolog

failure _d: event



analysis time _t: tsurv
id: id
Cox regression -- no ties
No. of subjects = 486
No. of failures = 424

Time at risk 583.8291199

Number of obs

486

11.12
0.0111

Log likelihood = -2307.7533
_t | Haz. Ratio Std. Err
tx | 1.310947 .1278614
sex | 1.129684 .117439
age | .9947913 .0048869

Intervall

1.587106
1.384987
1.004416

. stcox tx sex, nolog

failure _d: event
analysis time _t: tsurv
id: id
Cox regression -- no ties
No. of subjects = 486
No. of failures = 424

Time at risk 583.8291199

Log likelihood -2308.3165

486

9.99
0.0068

Intervall

_____________ A

1.59701
1.406856

_t | Haz. Ratio Std. Err.
tx | 1.319648 .1284444
sex | 1.150779 .1179678
. stcox tx age, nolog
failure _d: event
analysis time _t: tsurv
id: id
Cox regression -- no ties
No. of subjects = 486
No. of failures = 424

Time at risk 583.8291199

Log likelihood

-2308.4493

486

9.72
0.0077

Intervall

_____________ A e e

_t | Haz. Ratio Std. Err.
tx | 1.309927 .1277078
age | .9938174 .0048068

LR chi2(3)
Prob > chi2
z P>zl [95% Conf.
2.78 0.006 1.08284
1.17 0.241 .9214424
-1.06 0.288 .9852591
Number of obs
LR chi2(2)
Prob > chi2
Z P>zl [95% Conf.
2.85 0.004 1.090458
1.37 0.171 .9413129
Number of obs
LR chi2(2)
Prob > chi?2
z P>|z| [95% Conf.
2.77 0.006 1.082085
-1.28 0.200 .9844407

1.585742
1.003283
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. stcox tx, nolog

failure _d: event

analysis time _t: tsurv

id: id
Cox regression -- no ties
No. of subjects = 486 Number of obs = 486
No. of failures = 424
Time at risk = 583.8291199
LR chi2(1) = 8.09
Log likelihood =  -2309.2681 Prob > chi2 = 0.0045
_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall
_____________ o
tx | 1.319277 .1283979 2.85 0.004 1.090167 1.596536

Adjusting for treatment modality, there is no evidence that either sex or age are associated with
survival, with Wald test p-values of 0.17 and 0.20 for sex and age, respectively. Furthermore, fitting a
Cox regression models with and without age and sex suggest that the effect of treatment modality is
insensitive to inclusion of age and sex in the model. The hazard ratio for chemotherapy-+radiotherapy
compared with conventional therapy is 1.32 (95% CI: 1.09, 1.60), suggesting that the average hazard
ratio for chemotherapy-+radiotherapy is high over the five-year period.

For the time scale, we have initially used time since cancer diagnosis. There is a strong association
between time since diagnosis and survival, suggesting that this is the best choice of primary time scale.
Moreover, there is a suggestion of non-proportional hazards, with a higher rate ratio in the first year
than for the later years. We could investigate using attained age as the primary time scale, but then we
would need to finely model for the time since diagnosis, which would require modelling two time scales.
For simplicity, we propose using time since diagnosis as the primary time scale.

Question 6
(i)
For an analysis of scaled Schoenfeld residuals, we use:

. estat phtest, detail

Test of proportional-hazards assumption

| rho chi?2 df Prob>chi?2
____________ o
tx | -0.06664 1.85 1 0.1737
____________ A o e
global test | 1.85 1 0.1737

. estat phtest, plot(tx) name(phtest, replace) scheme(s2mono)
. graph export exam_2016_phtest.eps, name(phtest) replace
(file exam_2016_phtest.eps written in EPS format)
. * the following line is only needed on Linux
!'! convert -density 300 exam_2016_phtest.eps exam_2016_phtest_$folder.png
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Test of PH Assumption
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This shows that there is little evidence (p = 0.17) that the hazard ratio decreases with increasing
time since diagnosis: the scaled residuals and linear time have a correlation of -0.07. From the plot of
the scaled residuals and time, we see the running mean smoother dips early in the follow-up period and
then is flat or very slightly declining. Given the number of events that are early in the period, we could
also test using a log-transformation for time since diagnosis:

. estat phtest, detail log
Test of proportional-hazards assumption

Time: Log(t)

| rho chi2 af Prob>chi2
____________ A o
tx | -0.10910 4.96 1 0.0259
____________ o e
global test | 4.96 1 0.0259

. estat phtest, log plot(tx) name(phtestlog, replace) scheme(s2mono)
. graph export exam_2016_phtestlog.eps, name(phtestlog) replace
(file exam_2016_phtestlog.eps written in EPS format)
. * the following line is only needed on Linux
!l convert -density 300 exam_2016_phtestlog.eps exam_2016_phtestlog_$folder.p
> ng
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Running mean smoother
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In contrast to the linear time scale, there is evidence for non-proportionality on a log(time) scale
(p = 0.03).

(ii)
We can test for piecewise-constant hazard ratios by splitting by time and fitting for an interaction.

In the following, the "c" prefix indicates a continuous variable, while the "i" prefix indicates a factor
variable.

. quietly import delimited "http://biostat3.net/download/exams/2016/$folder/sur
> vival.csv", clear

. quietly stset tsurv, fail(event) id(id)

. stsplit timeband, at(0, 1, max)

(172 observations (episodes) created)

. stcox sex i.tx##i.timeband, nolog

failure _d: event

analysis time _t: tsurv

id: id
Cox regression -- no ties
No. of subjects = 486 Number of obs = 658
No. of failures = 424
Time at risk = 583.8291199
LR chi2(3) = 13.11
Log likelihood =  -2306.7568 Prob > chi2 = 0.0044
_t | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Interval]
_____________ o
sex | 1.149816 .1178737 1.36  0.173 .9405183 1.40569
1.tx | 1.466359 .1679591 3.34 0.001 1.1715 1.835432
1.timeband | 20.08552
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|
tx#timeband |
11 | .6780242 .1500214 -1.76 0.079 .4394466 1.046127

. stcox tx sex c.tx#c.timeband, nolog

failure _d: event

analysis time _t: tsurv

id: id
Cox regression -- no ties
No. of subjects = 486 Number of obs = 658
No. of failures = 424
Time at risk = 583.8291199
LR chi2(3) = 13.11
Log likelihood =  -2306.7568 Prob > chi2 = 0.0044
_t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Interval]
_____________ A o
tx | 1.466359 .1679591 3.34 0.001 1.1715 1.835432
sex | 1.149816 .1178737 1.36 0.173 .9405183 1.40569
I
c.tx#]|
c.timeband | .6780242 .1500214 -1.76  0.079 .4394466 1.046127
. stcox c.tx#i.timeband, nolog
failure _d: event
analysis time _t: tsurv
id: id
Cox regression -- no ties
No. of subjects = 486 Number of obs = 658
No. of failures = 424
Time at risk = 583.8291199
LR chi2(2) = 11.23
Log likelihood = -2307.697 Prob > chi2 = 0.0036
_t | Haz. Ratio Std. Err. z P>|z]| [957 Conf. Intervall
______________ o
timeband#c.tx |
0 | 1.466498 .1679618 3.34 0.001 1.171632 1.835574
1 | .9929335 .1879615 -0.04 0.970 .6851542 1.438971

This model provides some evidence that the hazard ratio is time-dependent for a piecewise-constant
hazard ratio (p = 0.08). The hazard ratio in the first year is raised at 1.47 (95% CI: 1.17, 1.84), while
the hazard ratio after the first year is close to 1 (HR=0.99; 95% CI: 0.69, 1.44).

(iii)
We can re-fit the model in (ii) using Stata stcox’s tvc and texp options:

. stcox tx, nolog tvc(tx) texp(_t>=1)
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failure _d: event

analysis time _t: tsurv

id: id
Cox regression -- no ties
No. of subjects = 486 Number of obs = 658
No. of failures = 424
Time at risk = 583.8291199
LR chi2(2) = 11.23
Log likelihood = -2307.697 Prob > chi2 = 0.0036
_t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Interval]
_____________ A o
main |
tx | 1.466498 .1679618 3.34 0.001 1.171632 1.835574
_____________ A e
tve |
tx | .6770779 .149804 -1.76  0.078 .4388435 1.044642

Note: variables in tvc equation interacted with _t>=1

Again, we find some evidence for a time-dependent hazard ratio (p = 0.08). We can model for a
time-dependent hazard ratio that depends on time:

. stcox tx, nolog tvc(tx) texp(_t)

failure _d: event

analysis time _t: tsurv

id: id
Cox regression -- no ties
No. of subjects = 486 Number of obs = 658
No. of failures = 424
Time at risk = 583.8291199
LR chi2(2) = 9.97
Log likelihood =  -2308.3273 Prob > chi2 = 0.0068
_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ e e
main |
tx | 1.449659 .1731819 3.11 0.002 1.147039 1.832119
_____________ A o e e
tve |
tx | .8829756 .0808914 -1.36 0.174 .7378503 1.056645

Note: variables in tvc equation interacted with _t

The interpretation of this model is as follows: the hazard ratio at time 0 is 1.45 (95% CI: 1.15, 1.83).
For every year, there is little evidence for a linear decrease in the hazard ratio (RR=0.99, 95% CI: 0.98,
1.00).
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(iv)
Using stpm2 with time-dependent hazard ratios, we use a low-dimensional natural spline for the time-

dependent effect. We use a Wald test to check for time-dependence and plot the time-dependent hazard
ratio:

. stpm2 tx, df(4) scale(hazard) nolog eform tvc(tx) dftvc(2)
note: delayed entry models are being fitted

Log likelihood = -1084.5605 Number of obs = 658

| exp(b)  Std. Err. z P>|z| [95% Conf. Interval]

_____________ o e
xb |

tx | 1.478171 .1648009 3.51 0.000 1.188022 1.839182

_rcsl | 3.289988 .2999739 13.06  0.000 2.75159 3.933734

_rcs2 | 1.06185 .0695569 0.92 0.360 .9339096 1.207317

_rcs3 | .9966186 .0238257 -0.14 0.887 .9509982 1.044427

_rcsd | .9770622 .0151503 -1.50 0.135 .9478149 1.007212

_rcs_tx1 | .8450199 .09426 -1.51 0.131 .6790744 1.051518

_rcs_tx2 | 1.025035 .0771313 0.33 0.742 .8844803 1.187927

_cons | .5187743 .0435441 -7.82 0.000 .4400799 .6115406

. test _rcs_txl _rcs_tx2

(1) [xbl_res_txl1 =0

(2) [xb]l_recs_tx2 =0
chi2( 2) = 4.95
Prob > chi2 = 0.0843

. predict hr, hrnumerator(tx 1) ci
. twoway (rarea hr_lci hr_uci _t if hr_uci<5, sort color(gs12)) (line hr _t if
> hr_uci<b, sort), legend(off) xtitle("Time since diagnosis") ytitle("Hazard ra
> tio") name(hr, replace) scheme(s2mono)
. graph export exam_2016_hr.eps, name(hr) replace
(file exam_2016_hr.eps written in EPS format)
. * the following line is only needed on Linux
!'! convert -density 300 exam_2016_hr.eps exam_2016_hr_$folder.png
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We see that there is some evidence for time-dependent hazards (p = 0.08 from the Wald test). We
also see from the plot that the hazard ratio looks comparatively stable across the follow-up period.

Question 7

(a)

Advantages of using Poisson regression for Questions 5-6 include: (i) Poisson regression readily models
for multiple time scales, where we could split on attained age and time since diagnosis and then model
for main effects and interactions between those time scales and interactions between a time scale and
other covariates; (ii) it is simpler to predict rates from Poisson regression, as the analysis is done on
that scale.

Disadvantages of using Poisson regression include: (i) the need to split on the time scales, which
may increase the size of the computational problem; (ii) the need to specify a functional form for
the primary time scale using parametric functions, rather than using Cox regression’s non-parametric
formulation; (iii) crude time splitting will assume that rates are piece-wise constant, which may not be
appropriate; (iv) risk calculations for Poisson regression require that the risk period involves constant
rates or numerical integration.

(b)
Assuming that the follow-up time has been split for within one year of diagnosis and from one year of
diagnosis, we can model the rate using:

log(A(t|tx)) = fo + Bil(t < 1)+ Bol(t > 1) + Bol(tx = 1) + Bul(tx =1 & t > 1)

A better formulation would be to include more time-splits for time since diagnosis. If we let time
cuts be represented by t; where tg = 0, then

log()\(t|tx)) =B+ Zﬂjl(tj—l <t< tj) + ﬁtxl(tx = 1) + Bixtltx=1& t > 1)
J

We could also model using splines. Any similar formulation was accepted, including different formu-
lations for the time-dependent hazard ratios.
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