
BIOSTAT III: Survival Analysis for Epidemiologists in R:
Take-home examination (answers)

Mark Clements
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Instructions

• The examination is individual-based: you are not allowed to cooperate with
anyone, although you are encouraged to consult the available literature. The examiner
will use Urkund in order to assess potential plagiarism.

• The examination will be made available by noon on Wednesday 18 November 2020 and
the examination is due by 17:00 on Wednesday 25 November 2020.

• The examination will be graded and results returned to you by Wednesday 2 December
2020.

• The examination is in two parts. To pass the examination, you need to score at least
6/11 for Part 1 focused on rates and general regression modelling and 13/24 for Part 2 on
survival analysis.

• Do not write answers by hand: please use Word, LATEX, Markdown or a similar format for
your examination report and submit the report as a PDF file.

• Motivate all answers in your examination report. Define any notation that you use for
equations. The examination report should be written in English.

• Email the examination report containing the answers as a PDF file to gunilla.nilsson.roos@ki.se.
Write your name in the email, but do NOT write your name or otherwise reveal
your identity in the document containing the answers.

Part 1

The dm data-frame includes simulated data on all cause mortality rates for those with and
without diabetes in Denmark for 1996–2016 (based on the DMepi dataset from the Epi package).
The dataset has the following columns:

sex a factor with levels M, F

A One-year age class, 0–99 years

P Calendar year, 1996–2016

diab Indicator for persons with diabetes (1=yes, 0=no)

Y Person-years

D Number of deaths

R Rates (=D/Y)
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Q1

(a) The age-specific mortality rates stratified by sex and diabetes status for those aged 50 years
and over are shown in Figure 1. The crude mortality rates by calendar period stratified by
sex and diabetes status for ages 70-74 years are shown in Figure 2. Carefully describe the
pattern of rates by age, calendar period, sex and diabetes status. (2 pts)

Answer From Figure 1, the mortality rates rise rapidly with age, with fewer at risk at oldest
ages. Rates are low at age 50 years, rising to 0.3-0.4 per year at age 90 years. There is
a suggestion that males have higher rates than females, although this is difficult to see as
the two sets of results are on different panels. There is evidence that those diagnosed with
diabetes have a higher mortality rates than those not diagnosed. For diabetes status, there
is some evidence for non-proportionality by age given either males or females. From Figure
2, we see evidence that the crude mortality rates have been decreasing over calendar time for
each sex and for those with or without a diagnosis of diabetes. There is some suggestion
that the reduction in rates over time is proportionally greater for those diagnosed with
diabetes than those not diagnosed. Note that we have not standardised for age groups, so
an ageing population would lead to an increase in the trends - such suggests that the age
standardised rates would decline faster than the crude rates.

library(ggplot2) # ggplot
ggplot(subset(dm, P==2010 & A>=50), aes(x=A,y=R,col=factor(diab))) +

geom_line() +
facet_wrap(~sex) + xlab("Age (years)") + ylab("Mortality rate")
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Figure 1: Age-specific mortality rates stratified by sex and presence or absence of diabetes, ages
50 years and over, 2010 calendar year, Denmark.
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ggplot(subset(dm, A==70), aes(x=P,y=R,col=factor(diab))) +
geom_line() + ylim(0,0.1) +
facet_wrap(~sex) + xlab("Calendar period") + ylab("Mortality rate")
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Figure 2: Crude mortality rates stratified by sex and presence or absence of diabetes, age 70
years, Denmark.

The following code and output is used to model the mortality rates by diabetes status for
males and females separately:

fit = glm(D~I(A-70)+I(P-2006)+diab+offset(log(Y)), data=dm, family=poisson,
subset=(sex=="M"))

summary(fit)

Call:
glm(formula = D ~ I(A - 70) + I(P - 2006) + diab + offset(log(Y)),

family = poisson, data = dm, subset = (sex == "M"))

Deviance Residuals:
Min 1Q Median 3Q Max

-5.5067 -0.7403 0.0789 1.6214 10.1062

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.581e+00 1.476e-03 -2425.7 <2e-16 ***
I(A - 70) 9.447e-02 9.688e-05 975.1 <2e-16 ***
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I(P - 2006) -2.895e-02 2.195e-04 -131.9 <2e-16 ***
diab 5.649e-01 3.641e-03 155.2 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1606155 on 4196 degrees of freedom
Residual deviance: 16309 on 4193 degrees of freedom
AIC: 37186

Number of Fisher Scoring iterations: 4

fit = glm(D~I(A-70)+I(P-2006)+diab+offset(log(Y)), data=dm, family=poisson,
subset=(sex=="F"))

summary(fit)

Call:
glm(formula = D ~ I(A - 70) + I(P - 2006) + diab + offset(log(Y)),

family = poisson, data = dm, subset = (sex == "F"))

Deviance Residuals:
Min 1Q Median 3Q Max

-6.6231 -0.5669 0.2184 1.5833 9.7857

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.9797988 0.0016456 -2418.5 <2e-16 ***
I(A - 70) 0.1015081 0.0001028 987.2 <2e-16 ***
I(P - 2006) -0.0218066 0.0002171 -100.4 <2e-16 ***
diab 0.5150987 0.0038840 132.6 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1827118 on 4197 degrees of freedom
Residual deviance: 15728 on 4194 degrees of freedom
AIC: 35513

Number of Fisher Scoring iterations: 4

(b) Write out the regression model for males. As a reminder, please explain all of your notation.
(2 pts)

Answer E(D) = exp(β0 + β1A + β2diab + log(T)), where E(D) is the expected count, β0 is the
intercept coefficient, β1 is the coefficient for the linear term for A, β2 is the coefficient for
the effect of diab, and log(T) is the offset term for the log of the person-time for modelling
rates.

(c) What are the mortality rate ratios and 95% confidence intervals for those with diabetes
compared with those without diabetes for (i) males and (ii) females? (2 pts)
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Answer For males, the mortality rate ratio exp(5.649e − 01) = 1.759, with a lower bound for
the 95% confidence interval of exp(5.649e− 01− 1.96 ∗ 3.641e− 03) = 1.747 and an upper
bound of exp(5.649e − 01 + 1.96 ∗ 3.641e − 03) = 1.772. For females, the mortality rate
ratio exp(4.629e − 01) = 1.589, with a lower bound for the 95% confidence interval of
exp(4.629e − 01 − 1.96 ∗ 1.716e − 02) = 1.536 and an upper bound of exp(4.629e − 01 +
1.96 ∗ 1.716e− 02) = 1.643.

The following two interaction models can be used to compare the mortality rate ratio of
diabetes for males with the mortality rate ratio of diabetes for females.

fit2 = glm(D~I(A-70)+I(P-2006)+diab*sex+offset(log(Y)), data=dm, family=poisson)
summary(fit2)

Call:
glm(formula = D ~ I(A - 70) + I(P - 2006) + diab * sex + offset(log(Y)),

family = poisson, data = dm)

Deviance Residuals:
Min 1Q Median 3Q Max

-6.4248 -0.6975 0.0667 1.5840 10.8122

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.589e+00 1.469e-03 -2442.520 < 2e-16 ***
I(A - 70) 9.785e-02 7.039e-05 1390.096 < 2e-16 ***
I(P - 2006) -2.540e-02 1.544e-04 -164.546 < 2e-16 ***
diab 5.475e-01 3.620e-03 151.246 < 2e-16 ***
sexF -3.650e-01 2.048e-03 -178.249 < 2e-16 ***
diab:sexF -1.737e-02 5.279e-03 -3.291 0.000997 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3433285 on 8394 degrees of freedom
Residual deviance: 35088 on 8389 degrees of freedom
AIC: 75746

Number of Fisher Scoring iterations: 4

fit2 = glm(D~I(A-70)+I(P-2006)+sex+diab:sex+offset(log(Y)), data=dm, family=poisson)
summary(fit2)

Call:
glm(formula = D ~ I(A - 70) + I(P - 2006) + sex + diab:sex +

offset(log(Y)), family = poisson, data = dm)

Deviance Residuals:
Min 1Q Median 3Q Max

-6.4248 -0.6975 0.0667 1.5840 10.8122

5



Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.589e+00 1.469e-03 -2442.5 <2e-16 ***
I(A - 70) 9.785e-02 7.039e-05 1390.1 <2e-16 ***
I(P - 2006) -2.540e-02 1.544e-04 -164.5 <2e-16 ***
sexF -3.650e-01 2.048e-03 -178.2 <2e-16 ***
sexM:diab 5.475e-01 3.620e-03 151.2 <2e-16 ***
sexF:diab 5.301e-01 3.872e-03 136.9 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3433285 on 8394 degrees of freedom
Residual deviance: 35088 on 8389 degrees of freedom
AIC: 75746

Number of Fisher Scoring iterations: 4

(d) Write out the regression equation for the second interaction model. (1 pt)

Answer E(D) = exp(β0 + β1I(A − 50) + β2I(diab − 2006) + β3I(sex = ”F”) + β4I(sex =
”M”&diag = 1) + β5I(sex = ”F”&diag = 1) + log(T)), where $I(x) is an indicator or a
constant function.

(e) What are the mortality rate ratios and 95% confidence intervals for those with diabetes
compared with those without diabetes for (i) males and (ii) females? Why are these
estimates different to the estimates in (c)? (2 pts)

Answer For males, the mortality rate ratio is exp(5.475e−01) = 1.729, with 95% confidence in-
terval (exp(5.475e-01-1.96*3.620e-03)=1.717, exp(5.475e-01+1.96*3.620e-03)=1.741). For
females, the mortality rate ratio is exp(5.301e − 01) = 1.700, with 95% confidence in-
terval (exp(5.301e-01-1.96*3.872e-03)=1.686, exp(5.301e-01+1.96*3.872e-03)=1.712). The
two models in (c) have sex-specific adjustments for age and diabetes. In contrast, the model
in (d) has a common adjustment for age for both sexes (where I have centred for age), a
common adjustment for calendar period (which is not included in (b)), a main effect for sex
(which would be equivalent to different intercept terms in (b)), and sex-specific intercept
terms for diabetes status (which is similar to sex-specific diabetes effects).

(f) Formally test for whether the two mortality rate ratios for males and females in (e) are
different. Explain how you undertook the test and interpret the findings. (1 pt)

Answer The interaction term diab:sexF in the model with main effects and an interaction term,
that is glm(D~I(A-70)+I(P-2006)+diab*sex+offset(log(Y)), data=dm, family=poisson),
assesses whether there is a difference in the mortality rate ratios for diabetes. The p-value is
0.001, which is highly significant. However, the ratio of the mortality rate ratios for females
compared with males is close to one: exp(−1.737e−02) = 0.983, with 95% confidence inter-
val (exp(−1.737e−02−1.96∗5.279e−03) = 0.973, exp(−1.737e−02+1.96∗5.279e−03) =
0.993.

(g) How would you interpret the parameter in the second interaction model (Intercept)? (1
pt)

Answer This is the log mortality rate when A=70, P=2006, sex="M" and diab=0, which is
males aged 70 in 2006 who have not been diagnosed with diabetes.
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Part 2

Q2

We now use data from the German Breast Cancer Study Group (GBCSG) on a randomised study
of hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients
(see https://doi.org/10.1200/JCO.1994.12.10.2086). The event considered was time to re-
currence of breast cancer or death due to breast cancer ("recurrence-free survival"). The main
study found no effect associated with the duration of chemotherapy on recurrence-free survival.
The help page for the dataset is shown below:

library(rstpm2) # brcancer, stpm2
help("brcancer", help_type="text")

brcancer package:rstpm2 R Documentation

_G_e_r_m_a_n _b_r_e_a_s_t _c_a_n_c_e_r _d_a_t_a _f_r_o_m _S_t_a_t_a.

_D_e_s_c_r_i_p_t_i_o_n:

See <URL: http://www.stata-press.com/data/r11/brcancer.dta>.

_U_s_a_g_e:

data(brcancer)

_F_o_r_m_a_t:

A data frame with 686 observations on the following 15 variables.

‘id’ a numeric vector

‘hormon’ hormonal therapy

‘x1’ age, years

‘x2’ menopausal status

‘x3’ tumour size, mm

‘x4’ tumour grade

‘x5’ number of positive nodes

‘x6’ progesterone receptor, fmol

‘x7’ estrogen receptor, fmol

‘rectime’ recurrence free survival time, days

‘censrec’ censoring indicator

‘x4a’ tumour grade>=2
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‘x4b’ tumour grade==3

‘x5e’ exp(-0.12*x5)

_E_x_a_m_p_l_e_s:

data(brcancer)
## maybe str(brcancer) ; plot(brcancer) ...

For data preparation, we categorise for age (x1, with a frequency table) and make a binary
indicator for progesterone receptor (x6) to create the data-frame brcancer2:

brcancer2 = transform(brcancer,
x1cat=cut(x1,c(0,45,60,85),right=FALSE), # age groups
x6ind=ifelse(x6>=20,1,0)) # is progesterone receptor >= 20 fmol?

We now define the event time as the time from randomisation to time of recurrence or death
– that is, we are modelling for recurrence-free survival. There were 299 events and the event
times are in days from randomisation.

(a) The Kaplan-Meier estimators for the survival functions by progesterone receptor ≥ 20 fmol
(0=no, 1=yes) are shown in Figure 3. Carefully describe and interpret the two survival
curves. (2 pts)

Answer For those with progesterone receptor ≥ 20 fmol (x6ind=1, which is the red line), we see
relatively good survival for the year 300 days, with a more rapid drop in survival through
to about 0.5 by around 2000 days. For this group, there are few at risk after approximately
1750 days. For those with progesterone receptor < 20 fmol (black line), the initial survival
to 150 days is similar to that for those with a higher progesterone receptor, and then
there is a rapid decline in survival to 500 days, and then a continued decline in survival
to approximately 0.3 by 2000 days. There are very few at risk after 2000 days. There
is a clear separation between the two curves, indicative of better survival for those with
higher progesterone receptor levels. The small steps early in follow-up suggest that there
are many events and a larger cohort.

library(survival) # survfit, survdiff, Surv, coxph, cox.zph
sfit = survfit(Surv(rectime, censrec==1)~x6ind, data=brcancer2)
plot(sfit, col=1:2, xlab="Recurrence free survival time (days)", ylab="Survival")
legend("topright", paste("x6ind =", 0:1), col=1:2, lty=1, bty="n")

(b.i) Write out the regression equation for the Cox model specified in the following code and
output. (2 pts)

Answer The formula is

h(t|x) = h0(t) exp(β1I(x1cat = ”[45, 60)”) + β2I(x1cat = ”[60, 80)”) + β3hormon+ β4x6ind)

where h(t|x) is the hazard at time t given covariates x, which includes x1cat, hormon and x6ind.

(b.ii) Based on the following output, discuss whether there is any evidence that progesterone
receptor is associated with recurrence-free survival. (2 pts)

8



0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recurrence free survival time (days)

S
ur

vi
va

l

x6ind = 0
x6ind = 1

Figure 3: Kaplan-Meier survival curves by progesterone receptor ≥ 20 fmol, German Breast
Cancer Study Group
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Answer After adjusting for time from study entry, age at study entry and hormone therapy, we
find a hazard ratio for those with progesterone receptor ≥ 20 fmol compared with lower
progesterone receptor levels of 0.466, with a 95% confidence interval (0.371, 0.585). This
indicates that higher progestorone receptor levels are associated with improved survival,
which is consistent with Figure 3.

fit = coxph(Surv(rectime,censrec==1)~x1cat+hormon+x6ind, data=brcancer2)
summary(fit)

Call:
coxph(formula = Surv(rectime, censrec == 1) ~ x1cat + hormon +

x6ind, data = brcancer2)

n= 686, number of events= 299

coef exp(coef) se(coef) z Pr(>|z|)
x1cat[45,60) -0.3027 0.7388 0.1502 -2.016 0.04382 *
x1cat[60,85) -0.1359 0.8729 0.1638 -0.829 0.40688
hormon -0.3523 0.7031 0.1273 -2.767 0.00565 **
x6ind -0.7701 0.4630 0.1163 -6.624 3.49e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
x1cat[45,60) 0.7388 1.354 0.5504 0.9916
x1cat[60,85) 0.8729 1.146 0.6332 1.2035
hormon 0.7031 1.422 0.5478 0.9023
x6ind 0.4630 2.160 0.3686 0.5814

Concordance= 0.648 (se = 0.016 )
Likelihood ratio test= 56.63 on 4 df, p=1e-11
Wald test = 57.77 on 4 df, p=9e-12
Score (logrank) test = 60.17 on 4 df, p=3e-12

(c) Based on the following Schoenfeld residuals table, is there any evidence for non-proportionality
in the modelled covariates? Interpret the table and explain your reasoning. (1 pt)

cox.zph(fit)

chisq df p
x1cat 3.832 2 0.1472
hormon 0.244 1 0.6212
x6ind 7.180 1 0.0074
GLOBAL 10.622 4 0.0312

Answer The global test suggests some evidence for non-proportionality (p=0.033). There is
strong evidence for non-proportionality for x6ind (p=0.008), with little or no evidence
for age groups and hormone therapy. This suggests modelling or adjusting for non-
proportionality for progesterone receptor.

(d) Based on the following plot of Schoenfeld residuals (Figure 4), how would you expect the
hazard ratio for progesterone receptor to vary by time since randomisation? Explain your
reasoning. (2 pts)
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Figure 4: Schoenfeld residual plot for progesterone receptor ≥ 20 fmol, German Breast Cancer
Study Group
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plot(cox.zph(fit)[3])

Answer From Figure 4, the beta coefficient (or log hazard ratio) for x6ind starts at just below
-1 and then rises to close to zero at around 1100 days, with a suggestion of a drop after
1100 days, although there are few events and wide confidence intervals. The curves do not
seem to be consistent with a horizontal line (or time-constant hazard ratio). Moreover, the
test in the previous table suggests a non-zero correlation between the scaled Schoenfeld
residuals and time. This suggests that we should model or adjust for non-proportional
hazard ratios for progesterone receptor levels.

(e) We now fit a flexible parametric survival model adjusting for x1cat, x6ind and hormon
(see the following output). How is this model different to the model in (b)? (2 pts)

fit4 = stpm2(Surv(rectime, censrec==1)~x1cat+x6ind+hormon, data=brcancer2, df=4)
summary(fit4)

Maximum likelihood estimation

Call:
stpm2(formula = Surv(rectime, censrec == 1) ~ x1cat + x6ind +

hormon, data = brcancer2, df = 4)

Coefficients:
Estimate Std. Error z value Pr(z)

(Intercept) -6.19938 0.73496 -8.4350 < 2.2e-16 ***
x1cat[45,60) -0.30442 0.15013 -2.0277 0.042593 *
x1cat[60,85) -0.13170 0.16372 -0.8044 0.421159
x6ind -0.76900 0.11622 -6.6165 3.678e-11 ***
hormon -0.35317 0.12728 -2.7748 0.005523 **
nsx(log(rectime), df = 4)1 5.72428 0.71653 7.9889 1.362e-15 ***
nsx(log(rectime), df = 4)2 4.90271 0.48007 10.2126 < 2.2e-16 ***
nsx(log(rectime), df = 4)3 10.16016 1.41344 7.1882 6.564e-13 ***
nsx(log(rectime), df = 4)4 4.79232 0.33088 14.4836 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 5165.142

Answer The models are closely related, where both adjust for age groups, progesterone receptor
and hormone therapy. The models adjust for the baseline hazard in different ways, where
the Cox model assumes a non-parametric baseline hazard, while the flexible parametric
survival model adjusts for the baseline log cumulative hazards using splines.

(f) We now fit a model with time-varying effects for progesterone receptor. We plot the time-
varying hazard ratio for progesterone receptor ≥ 20 fmol. Carefully interpret the plot in
Figure 5. (2 pts)

fit5 = stpm2(Surv(rectime, censrec==1)~x1cat+x6ind+hormon, data=brcancer2, df=4,
tvc=list(x6ind=3))

plot(fit5, type="hr", newdata=data.frame(hormon=0,x1cat="[60,85)",x6ind=0), var="x6ind",
ylim=c(0,1.5))

12



0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

rectime

H
az

ar
d 

ra
tio

Figure 5: Time-varying hazard ratio for progesterone receptor ≥ 20 fmol, German Breast Cancer
Study Group
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Answer For the hazard ratio comparing those with progesterone receptor levels at 20 fmol
or higher with those with lower levels, the hazard close to time 0 is uncertain, as there
are few events (see the "rug" of events on the x-axis). Then the hazard ratio is close
to approximately 0.25 at 250 days and then rises to a value of approximately 0.8 at 900
days, with confidence intervals that includes 1. The hazard ratio declines slowly from 900
days, with an increasingly wide confidence interval that includes 1, with comparatively few
events. This pattern is broadly consistent with the Schoenfeld residuals plot, although the
Schoenfeld plot did not model for very early events.

(g) We now present the results as the difference in survival for those with progesterone receptor
≥ 20 fmol compared with those with lower progesterone receptor, assuming no hormonal
treatment and ages 60 years and over. Carefully interpret the plot in Figure 6. Is this a
marginal or a conditional estimator? (3 pts)

plot(fit5, type="sdiff", newdata=data.frame(hormon=0,x1cat="[60,85)",x6ind=0), var="x6ind")
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Figure 6: Survival differences for progesterone receptor ≥ 20 fmol compared with < 20 fmol for
women aged 60 years and over with no hormonal therapy, German Breast Cancer Study Group

Answer The survival difference starts naturally at zero and then rises to approximately 0.25
at around 900 days, and then the point estimate remains moderately constant, with wide
confidence intervals. This is a conditional estimator, where there is no averaging over other
covariates.

Q3

(a) Consider a randomised study to evaluate the effectiveness of using rehabilitation clinics
versus usual care for patients discharged from hospital following a myocardial infarction
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who survived to 28 days. Effectiveness was measured using all cause mortality with follow-
up to five years after study entry. Discuss which time scales you could use for your analysis,
describing their advantages and disadvantages. Further describe the data you would collect
and which models you would use to analyse those data. (3 pts)

Answer For the time scales, the obvious time scales are: (a) time since discharge, which will
be related to the increased risks following a myocardial infarction (MI); and (b) attained
age, which is closely related to background mortality. We could also consider (c) calendar
period, where usual care may vary over time, (d) time from the initial MI event, and (e)
time between MI events (if that is available and appropriate). A simple analysis would be
to use time since discharge as the primary time scale and adjust for age at discharge. We
should collect data on mortality, age, and any potential confounding variables that may not
be balanced at randomisation. Such potential confounders could include sex, comorbidities
and any exclusion criteria.

(b) Discuss the difference between left truncation and left censoring. Use examples to explain
the differences. (2 pts)

Answer left truncation relates to when an individual is first observed. In the analysis, we
condition on entry at that particular time, e.g. Pr(T > t|T > t0), where T is the event
distribution and t0 is the entry time. Left censoring at time t relates to an event happening
prior to that time and back to time 0, that is: Pr(T < t).

(c) Design an observational cohort study to assess whether aspirin use affects the incidence of
prostate cancer. Assume that over-the-counter and prescribed aspirin use can be linked
to population and health registers. In your design, you should consider: inclusion and
exclusion criteria; entry and exit times; and potential confounders. You should also describe
how you would analyse these data, including the primary time scale and which regression
model you would use to estimate the target parameter. (3 pts)

Answer Exclusion criteria: individuals who have already been prescribed aspirin; individuals
who have been diagnosed with prostate cancer. Inclusion criteria: men aged 65 years and
over. Entry time: when recruited. Exit time: the least of 2022-12-31, death due to any
cause, or date of migration from Sweden. Potential confounders: comorbidities; age; other
variables related to aspirin use. Analysis: Cox regression adjusting for attained age, with
date of diagnosis of prostate cancer as the primary endpoint. The main challenge will
be how to adjust for the likelihood of using aspirin. There are other issues with use of
aspirin prior to study entry, where it would be good to adjust for that, and adjusting for
intermittent aspirin use.
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