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Instructions

e The examination is individual-based: you are not allowed to cooperate with
anyone, although you are encouraged to consult the available literature. The examiner
will use Urkund in order to assess potential plagiarisml

e The examination will be made available by noon on Wednesday 15 November 2023 and
the examination is due by 17:00 on Wednesday 22 November 2023.

e The examination will be graded and results returned to you by Wednesday 29 November
2023.

e The examination is in two parts. To pass the examination, you need to score at least
7/12 for Part 1 focused on rates and general regression modelling and 11/19 for Part 2 on
survival analysis.

e Do not write answers by hand: please use Word, KITEX, Markdown or a similar format for
your examination report and submit the report as a PDF file.

e Motivate all answers in your examination report. Define any notation that you use for
equations. The examination report should be written in English.

e Email the examination report containing the answers as a PDF file to|gunilla.nilsson.roos@ki.sel.
Write your name in the email, but do NOT write your name or otherwise reveal
your identity in the document containing the answers.

Part 1

The eha package on CRAN includes data-frames swepop and swedeaths, which are the person-
years and all deaths in Sweden by age, sex and calendar year. Below, we combine these two
data-frames to create a mort data-frame with the following variables

e Sex, which is encoded using the variable sex, which is "men" for males and "women" for
females

e Attained age, which is encoded in the variable age for single year of age for 0-99 and then
100 years and over.

e (Calendar period, which is encoded in the variable year for single calendar year for 1969—
2020.
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e Person-years, encoded in the variable pop, which was calculated using the mid-year popu-
lation.

e Number of deaths due to all causes, encoded in the variable deaths.

In the following, we restrict our analysis to adults aged 18 years and over (i) to simplify the
modelling for age and (ii) to give a more appropriate labelling for "men" and "women". We have
also removed the id variable by setting it to NULL, as it is not used.

library(eha)
mort = transform(swepop, deaths=swedeaths$deaths, id=NULL)

str(mort)

’data.frame’: 10504 obs. of 5 variables:

$age :int 0011223344 ...

$ sex : Factor w/ 2 levels "women","'men": 1 212121212 ...
$ year : int 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 ...
$ pop : num 52673 55728 56831 59924 58994 ...

$ deaths: int 491 773 33 45 22 43 25 30 25 46 ...

Q1

(a) We fit a Poisson regression model for all cause mortality rates in Sweden for ages 18 years
and over, with a continuous main effect for year minus 2000, an indicator for age>=65 and
an indicator for being male. Write a formula for this regression model. As a reminder,
please define your notation. (2 pts)

fit <- glm(deaths™I(year-2000)+I(age>=65)+I(sex=="men")+offset(log(pop)),
data=mort, subset=(age>=18), family=poisson)
summary (fit)

Call:

glm(formula = deaths ~ I(year - 2000) + I(age >= 65) + I(sex ==
"men") + offset(log(pop)), family = poisson, data = mort,
subset = (age >= 18))

Deviance Residuals:
Min 1Q Median 3Q Max
-52.729 -11.563 -2.643 17.708 62.510

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -6.113e+00 1.295e-03 -4720.5 <2e-16 **x
I(year - 2000) -7.902e-03 3.071e-05 -257.3 <2e-16 *xx*
I(age >= 65)TRUE 2.961e+00 1.272e-03 2327.4 <2e-16 **xx*
I(sex == "men")TRUE 2.511e-01 9.243e-04 271.7 <2e-16 **x*

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.056 ¢.”> 0.1 ¢ > 1

(Dispersion parameter for poisson family taken to be 1)



Null deviance: 12311058 on 8631 degrees of freedom
Residual deviance: 3983999 on 8628 degrees of freedom
AIC: 4046824

Number of Fisher Scoring iterations: 5

(b) From the regression model output, show how to numerically calculate the mortality rate
ratio for men compared with women, including the 95% confidence interval. (2 pts)

(c) From the regression model output, explain how to interpret the effects for I(year - 2000)
and I(age >= 65)TRUE. (2 pts)

(d) From the regression model output, show how to numerically calculate the predicted rate for
females aged 18-64 years in the year 2000, including the 95% confidence interval. (2 pts)

e) We now extend the regression model output to include an interaction between I(age>=65)
g
and I(sex=="male") (see R code and output below). Explain how to interpret the main
effect for I (sex=="male") for this model. (2 pts)

fit <- glm(deaths~I(year-2000)+I(age>=65)*I(sex=="men")+offset(log(pop)),
data=mort, subset=(age>=18), family=poisson)
summary (fit)

Call:

glm(formula = deaths ~ I(year - 2000) + I(age >= 65) * I(sex ==
"men") + offset(log(pop)), family = poisson, data = mort,
subset = (age >= 18))

Deviance Residuals:
Min 1Q Median 3Q Max
-51.538 -11.382 -2.192 18.027 61.875

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.291e+00 1.953e-03 -3221.6 <2e-16 **x*
I(year - 2000) -7.888e-03 3.071e-05 -256.8 <2e-16 *x*x
I(age >= 65)TRUE 3.165e+00 2.066e-03 1531.8 <2e-16 **x
I(sex == "men")TRUE 5.458e-01 2.430e-03 224.6 <2e-16 **xx*
I(age >= 65)TRUE:I(sex == "men")TRUE -3.468e-01 2.629e-03 -131.9 <2e-16 **x

Signif. codes: 0 ‘“**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12311058 on 8631 degrees of freedom
Residual deviance: 3966234 on 8627 degrees of freedom
AIC: 4029061

Number of Fisher Scoring iterations: 5

(f) Explain how you would assess whether the mortality rate ratio for men compared with
women is statistically different between (i) ages 18-64 years and (ii) 65 years and over.
From the interaction regression model output, what is the mortality rate ratio for men
aged 65 years and over compared with women aged 65 years and over? (2 pts)



Part 2
Q2

We now use data on chemotherapy for stage B/C colon cancer represented in the survival: :colon
dataset. The help page for the dataset is shown below:

library(survival)
help("colon", help_type="text", package="survival")

colon package:survival R Documentation
Chemotherapy for Stage B/C colon cancer
Description:

These are data from one of the first successful trials of adjuvant
chemotherapy for colon cancer. Levamisole is a low-toxicity
compound previously used to treat worm infestations in animals;
5-FU is a moderately toxic (as these things go) chemotherapy
agent. There are two records per person, one for recurrence and
one for death

Usage:
colon
data(cancer, package="survival")
Format:
id: id
study: 1 for all patients
rx: Treatment - Obs(ervation), Lev(amisole), Lev(amisole)+5-FU
sex: 1=male
age: in years
obstruct: obstruction of colon by tumour
perfor: perforation of colon
adhere: adherence to nearby organs
nodes: number of lymph nodes with detectable cancer
time: days until event or censoring
status: censoring status
differ: differentiation of tumour (1=well, 2=moderate, 3=poor)
extent: Extent of local spread (l=submucosa, 2=muscle, 3=serosa,
4=contiguous structures)
surg: time from surgery to registration (O=short, 1=long)
node4: more than 4 positive lymph nodes
etype: event type: l=recurrence,2=death
Note:

The study is originally described in Laurie (1989). The main
report is found in Moertel (1990). This data set is closest to
that of the final report in Moertel (1991).

References:

JA Laurie, CG Moertel, TR Fleming, HS Wieand, JE Leigh, J Rubin,
GW McCormack, JB Gerstner, JE Krook and J Malliard. Surgical
adjuvant therapy of large-bowel carcinoma: An evaluation of
levamisole and the combination of levamisole and fluorouracil: The
North Central Cancer Treatment Group and the Mayo Clinic. J
Clinical Oncology, 7:1447-1456, 1989.

CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, PJ
Goodman, JS Ungerleider, WA Emerson, DC Tormey, JH Glick, MH
Veeder and JA Maillard. Levamisole and fluorouracil for adjuvant
therapy of resected colon carcinoma. New England J of Medicine,
332:352-3568, 1990.

CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, CM
Tangen, JS Ungerleider, WA Emerson, DC Tormey, JH Glick, MH Veeder



and JA Maillard, Fluorouracil plus Levamisole as an effective
adjuvant therapy after resection of stage II colon carcinoma: a
final report. Annals of Internal Med, 122:321-326, 1991.

(a) The Kaplan-Meier estimators for overall survival by tumour differentiation are shown in
Figure |1} Carefully describe and interpret the three survival curves. (2 pts)

## Colour-blind palette of colours
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#FO0E442", "#0072B2",
"#D55E0Q", "#CC79A7T")
sfit = survfit(Surv(time, status)~differ, data=survival::colon, subset=(etype==2))
plot(sfit, xlab="Time since randomisation (days)", ylab="Overall survival",
col=cbPalette[1:3], lwd=1:3)
legend("topright", paste("differ =", 1:3), col=cbPalette[1:3], lwd=1:3, lty=1, bty="n"

3 - differ =1
differ = 2
differ =3

[oe]

&

- ©
g o7
<

>

%]

T

S <
(@) o

N

SN

o

S -

T T T T T T T
0 500 1000 1500 2000 2500 3000

Time since randomisation (days)

Figure 1: Kaplan-Meier overall survival curves by tumour differentiation

(b) Write out the regression equation for the Cox model specified in the following code. (2 pts)

colon2 = transform(subset(survival::colon, etype==2),
Lev = ifelse(rx=="Lev",1,0),

Lev_5FU = ifelse(rx=="Lev+5FU",1,0),
differ2 = ifelse(differ==2,1,0),
differ3 = ifelse(differ==3,1,0)

)

fit = coxph(Surv(time,status) "Lev+Lev_bFU+differ2+differ3, data=colon2)
summary (fit)



Call:
coxph(formula = Surv(time, status) ~ Lev + Lev_5FU + differ2 +
differ3, data = colon2)

n= 906, number of events= 441
(23 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|zl)
Lev -0.02954 0.97089 0.11232 -0.263 0.79254
Lev_BFU -0.37086 0.69014 0.11961 -3.101 0.00193 x*x*
differ2 0.04291 1.04385 0.16474 0.260 0.79448
differ3 0.54099 1.71770 0.18806 2.877 0.00402 *x*

Signif. codes: 0 ‘*xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1

exp(coef) exp(-coef) lower .95 upper .95

Lev 0.9709 1.0300 0.7791 1.2100
Lev_5FU 0.6901 1.4490 0.5459 0.8725
differ?2 1.0438 0.9580 0.7558 1.4417
differ3 1.7177 0.5822 1.1882 2.4833

Concordance= 0.568 (se = 0.014 )

Likelihood ratio test= 27.06 on 4 df, p=2e-05
Wald test 28.17 omn 4 df, p=1e-05
Score (logrank) test = 28.6 on 4 df, p=9e-06

(c) Based on the previous output, discuss whether there is any evidence that tumour differen-
tiation is associated with overall survival after adjusting for treatment (Lev and Levspy).
Provide confidence intervals and p-values to support your argument. (2 pts)

(d) We are interested in whether the effect of treatment on overall survival varies by tumour
differentiation. We fit a Cox model that includes main effects for treatment, a main effect
for I(differ==3), and interactions between treatment and I(differ==3). Based on the
regression model output, summarise and discuss the evidence for whether the treatment
effect on overall survival varies by tumour differentiation. (2 pts)

fit = coxph(Surv(time,status) Lev+Lev_bFU+differ3+Lev:differ3+Lev_bFU:differ3, data=colon2)
summary (fit)

Call:
coxph(formula = Surv(time, status) ~ Lev + Lev_5FU + differ3 +
Lev:differ3 + Lev_bFU:differ3, data = colon2)

n= 906, number of events= 441
(23 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>lzl)
Lev -0.02321 0.97705 0.12455 -0.186 0.85215
Lev_5FU -0.36638 0.69324 0.13482 -2.718 0.00657 *x*
differ3 0.52500 1.69046 0.19273 2.724 0.00645 *x
Lev:differ3 -0.04289 0.95802 0.28638 -0.150 0.88096

Lev_5FU:differ3 -0.02694 0.97342 0.29104 -0.093 0.92625



Signif. codes: O “*xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

exp(coef) exp(-coef) lower .95 upper .95

Lev 0.9771 1.0235 0.7654 1.2472
Lev_5FU 0.6932 1.4425 0.5323 0.9029
differ3 1.6905 0.5916 1.1587 2.4663
Lev:differ3 0.9580 1.0438 0.5465 1.6794
Lev_bFU:differ3 0.9734 1.0273 0.5503 1.7220

Concordance= 0.57 (se = 0.014 )

Likelihood ratio test= 27.02 on 5 df, p=6e-05
Wald test 28.2 omn 5 df, p=3e-05
Score (logrank) test = 29.13 on 5 df, p=2e-05

(d) We want to assess the whether the hazard ratio comparing differ==3 with differ==1 varies
with time. We initially fit a flexible parametric survival model without a time-varying effect
and then fit a model that includes a time-varying effect. Based on the following code and
output, what evidence is there for a time-varying hazard ratio? (2 pts)

library(rstpm2)

fit0 = stpm2(Surv(time,status) Lev+Lev_bFU+differ2+differ3, data=colon2, df=4)

fitl = stpm2(Surv(time,status) Lev+Lev_5FU+differ2+differ3, data=colon2, df=4,
tvc=list(differ3=3))

summary (fit1)

anova(fit0,fit1)

Maximum likelihood estimation

Call:
stpm2(formula = Surv(time, status) ~ Lev + Lev_5FU + differ2 +
differ3, data = colon2, df = 4, tvc = list(differ3 = 3))

Coefficients:

Estimate Std. Error z value
(Intercept) -8.966241 1.210950 -7.4043
Lev -0.022403 0.112351 -0.1994
Lev_5FU -0.355785  0.119577 -2.9754
differ2 0.042370 0.164733 0.2572
differ3 3.905793 1.392880 2.8041
nsx(log(time), df = 4)1 7.587702 1.199364 6.3264
nsx(log(time), df = 4)2 6.408176 0.768425 8.3394
nsx(log(time), df = 4)3 13.364836 2.326346 5.7450
nsx(log(time), df = 4)4 5.7556228 0.535244 10.7525
as.numeric(differ3) :nsx(log(time), df = 3)1 -2.217975  0.884171 -2.5085
as.numeric(differ3) :nsx(log(time), df = 3)2 -5.912347 2.702843 -2.1875
as.numeric(differ3) :nsx(log(time), df = 3)3 -2.085284 0.602981 -3.4583

Pr(z)

(Intercept) 1.318e-13 *xx
Lev 0.8419511
Lev_5FU 0.0029265 *x*
differ2 0.7970229
differ3 0.0050455 *x*



nsx(log(time), df = 4)1 .509e-10 *xx*

2
nsx(log(time), df = 4)2 < 2.2e-16 **x%
nsx(log(time), df = 4)3 9.193e-09 **x*
nsx(log(time), df = 4)4 < 2.2e-16 **x*
as.numeric(differ3) :nsx(log(time), df = 3)1 0.0121233 *
as.numeric(differ3) :nsx(log(time), df = 3)2 0.0287093 *

0

as.numeric(differ3) :nsx(log(time), df = 3)3 0.0005436 *x*x

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.056 ¢.”> 0.1 ¢ > 1

-2 log L: 7930.942

Likelihood Ratio Tests

Model 1: fitO, [negll]: (Intercept)+Lev+Lev_5FU+differ2+differ3+
nsx(log(time), df = 4)1+nsx(log(time), df = 4)2+nsx(log(time), df
4)3+nsx(log(time), df = 4)4

Model 2: fitl, [negll]: (Intercept)+Lev+Lev_bFU+differ2+differ3+
nsx(log(time), df = 4)1+nsx(log(time), df = 4)2+nsx(log(time), df
4)3+nsx(log(time), df = 4)4+as.numeric(differ3) :nsx(log(time), df
3)1+as.numeric(differ3d) :nsx(log(time), df = 3)2+
as.numeric(differ3) :nsx(log(time), df = 3)3

Tot Df Deviance Chisq Df Pr(>Chisq)
1 9 7956.3
12 7930.9 25.363 3 1.296e-05 ***

Signif. codes: 0 ‘*xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1

(e) Based on the plot of the time-varying hazard ratio comparing differ==3 with differ==
(Figure, describe how the hazard ratio varies by time since randomisation? Explain your
reasoning. (2 pts)

plot(fitl, newdata=data.frame(Lev=0,Lev_5FU=0,differ2=0,differ3=0), type="hr",
var="differ3", ylim=c(0,3), xlab="Time since randomisation (days)")
box() # for a nice box around the plot

(f) An alternative approach to assess for non-proportionality would be to fit a Cox regression
model and then use Schoenfeld residuals to (i) test for non-proportionality and (ii) plot
for a smoothed log hazard ratio. Compare and contrast using Schoenfeld residuals with
Cox regression with using flexible parametric survival models to investigate time-varying
hazards ratios. (2 pts)
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Figure 2: Time-varying hazard ratio for tumour differentiation 3 compared with tumour differ-
entiation 1 for overall survival, colon cancer patients

Q3

We put the following question to ChatGPT: "In survival analysis, we can compare two groups
using a variety of estimands. Discuss the different estimands and when we would prefer one
estimand over another."

On 2023-11-02, ChatGPT responded:

In survival analysis, researchers often compare two or more groups to assess the
impact of different factors on the time to an event (e.g., time to death, time to disease
recurrence). The choice of estimand (the parameter of interest) is critical and should
align with the research question and study design. Here are some common estimands
used in survival analysis and when to prefer one over another:

1. Hazard Ratio (HR):

e Estimand: The HR quantifies the ratio of the hazard rates (instantaneous
event rates) between two groups. It measures how the hazard of an event in
one group compares to the hazard in another.

o When to Use: HR is often preferred when the research question focuses on
comparing the relative instantaneous risk of an event between groups. It is
commonly used in Cox proportional hazards models.

2. Risk Ratio (RR):

o FEstimand: The RR measures the ratio of cumulative incidence or probability
of an event at a specific time in one group relative to another group.



o When to Use: RR is suitable when you want to compare the probability of
experiencing an event by a certain time point between two groups. This may
be preferred when the focus is on cumulative risk.

3. Median Survival Time:

e FEstimand: The median survival time is the time at which 50% of the indi-
viduals in a group have experienced the event.

o When to Use: Median survival time is useful when you want to provide a
simple and easily interpretable summary of the time to the event in different
groups. It can be used for descriptive purposes but may not capture all
relevant information.

4. Mean Survival Time:

o FEstimand: The mean survival time represents the average time to the event
in a group.

o When to Use: Mean survival time can be used when you are interested in
the expected time to the event, but it may be sensitive to outliers. It is not
commonly used because it does not account for censoring and may be affected
by right-censored data.

5. Restricted Mean Survival Time (RMST):

o Estimand: RMST represents the average survival time up to a specific time
point (e.g., 5 years) in one group compared to another.

o When to Use: RMST is valuable when you want to compare the overall
survival experience over a specified time horizon. It provides a clinically
interpretable measure and is less sensitive to censoring.

6. Area Under the Survival Curve (AUC):

o FEstimand: AUC quantifies the area under the survival curves for two or
more groups, which represents the overall survival experience over the entire
follow-up period.

o When to Use: AUC is useful when you want to compare the overall survival
experience without specifying a specific time point. It provides a comprehen-
sive summary of survival differences over the entire follow-up period.

The choice of estimand depends on the specific research question, the study design, and
the objectives of the analysis. HR is often preferred for comparing instantaneous risks,
while RR, median survival time, and RMST are suitable for comparing cumulative
risks at specific time points. Mean survival time is less common due to its sensitivity
to censoring, and AUC provides a comprehensive summary of survival differences over
the entire follow-up period. Researchers should select the estimand that best addresses
the research question and provides the most relevant insights for the study.

Within the context of the course material, critically appraise the answer given by ChatGPT.
In particular, state which of the findings you agree with, which you think are wrong (any why),
and whether there are any other estimands that could be of interest (and why). (5 pts)

(Part 1: 12 pts; Part 2: 19 pts)
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