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1 Notes on survival analysis using Stata

A general introduction to Stata (stataintro.pdf) can be downloaded from:
http://biostat3.net/download/.

If you are not familiar with Stata you should start by downloading and reading this introduction.
The same document includes an extensive description of the stset command that is central to
survival analysis.

In order to analyse survival data it is necessary to specify (at a minimum) a variable representing
the time at risk (e.g., survival time) and a variable specifying whether or not the event of interest
was observed (called the failure variable). Instead of specifying a variable representing time at
risk we may instead specify the entry and exit dates.

In many statistical software programs (such as SAS), these variables must be specified every
time a new analysis is performed. In Stata, these variables are specified once using the stset
command and then used for all subsequent survival analysis (st) commands (until the next
stset command). For example

. use melanoma
stset surv_mm, failure(status==1)

The above code shows how we would stset the skin melanoma data in order to analyse cause-
specific survival with survival time in completed months (surv_mm) as the time variable. The
variable status takes the values O=alive, 1=dead due to cancer, and 2=dead due to other
causes. We have specified that only status=1 indicates an event (death due to melanoma) so
Stata will consider observations with other values of status as being censored. If we wanted
to analyse observed survival (where all deaths are considered to be events) we could use the
following command

stset surv_mm, failure(status==1,2)

Some of the Stata survival analysis (st) commands relevant to this course are given below.
Further details can be found in the manuals or online help.

stset Declare data to be survival-time data

stsplit Split time-span records

sts Generate, graph, list, and test the survivor and cumulative
hazard functions

strate Calculate person-time at risk and failure rates

stcox Estimate Cox proportional hazards model

streg Estimate parametric survival models

strs Life table estimation of relative survival

Once the data have been stset we can use any of these commands without having to specify
the survival time or failure time variables. For example, to plot the estimated cause-specific
survivor function by sex and then fit a Cox proportional hazards model with sex and calendar
period as covariates

sts graph, by(sex)
stcox sex year8594
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2 Downloading user-written Stata commands and data files

Stata will be used throughout the course. This section describes how to download and install the
files required for the computing exercises (e.g., data files) as well as how to install user-written
commands for extending Stata. If you are working in a computer lab during a course it’s possible
these files may have already been installed for you.

2.1 Downloading the course files

It is suggested that you create a new folder where you can put all course files, e.g. c:\survival\.
The course files are available on the web as a ZIP archive.

Save and extract this folder in the course folder you created. Within Stata, you can change the
Stata working directory to the new directory (e.g., cd c:\survivall). You can at any point
use the pwd command to confirm you are in the working directory you wish to use for the course.

2.2 Installing Stata user-written commands

For some exercises you will need to install user-written commands. For each exercise where this
is needed we have added a note stating that a Stata addon is required. You can get back to this
section when you get to the first exercise requiring a Stata addon. If you have reached the first
exercise where you need to download user-written commands you can read further, otherwise skip
the rest of this section on user-written commands for now. Download and installation of user-
written commands is done within Stata. It is recommended that you change the Stata working
directory to the course directory (e.g., cd c:\survival\) before issuing these commands.

2.2.1 How can I check if these commands are already installed?

You can use the which command to check if (and where) a Stata command is installed.

. which stpm2
c:\ado\plus\s\stpm2.ado
*! version 1.5.0 29Jul2014

Use the adoupdate command to update previously installed user-written commands (note that
this is distinct from the update command that updates official Stata commands). Simply type
adoupdate, update to update all user-written commands.
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2.2.2 stpm2 - flexible parametric models

The stpm2 command, written by Paul Lambert and Patrick Royston, fits flexible parametric
survival models (so called Royston-Parmar models). It is installed from within Stata using the
following commands:

ssc install stpm2
ssc install rcsgen

rcsgen is a command for generating basis vectors for restricted cubic splines and is required by
stpm2.

2.2.3 Estimating probability of death in a competing risks framework

The stcompet command estimates the cumulative incidence function (CIF) non-parametrically.
The stcompadj command estimates the CIF using a competing risks analogue of the Cox model.
The stpm2cm command estimates the crude probabilities of death (i.e. CIF) after fitting a rela-
tive survival model using stpm2. The stpm2cif command estimates the CIF through postesti-
mation after fitting a cause-specific competing risks model using stpm2.

ssc install stcompet
ssc install stcompadj
ssc install stpm2cm

ssc install stpm2cif
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3 Exercises

100. Hand calculation: Life table and Kaplan-Meier estimates of survival
Using hand calculation (i.e., using a spreadsheet program or pen, paper, and a calculator)
estimate the cause-specific survivor function for the sample of 35 patients diagnosed with
colon carcinoma (see the table below) using both the Kaplan-Meier method (up to at least
30 months) and the actuarial method (at least the first 5 annual intervals).

In the lectures we estimated the observed survivor function (i.e. all deaths were considered
to be events) using the Kaplan-Meier and actuarial methods; your task is to estimate the
cause-specific survivor function (only deaths due to colon carcinoma are considered events)
using the same data. The next page includes some hints to help you get started.

Age Clinical  dx date Surv. time

ID Sex at dx stage mmyy mm yy Status

1 male 72 Localised 2.89 2 0 Dead - other
2 female 82 Distant 12.91 2 0 Dead - cancer
3 male 73 Distant 11.93 3 0 Dead - cancer
4 male 63 Distant 6.88 5 0 Dead - cancer
5 male 67 Localised 5.89 7 0 Dead - cancer
6  male 74 Regional 7.92 8 0 Dead - cancer
7 female 56 Distant 1.86 9 0 Dead - cancer
8 female 52 Distant 5.86 11 0 Dead - cancer
9 male 64 Localised 11.94 13 1 Alive

10 female 70 Localised 10.94 14 1 Alive

11 female 83 Localised 7.90 19 1 Dead - other
12 male 64 Distant 8.89 22 1 Dead - cancer
13 female 79 Localised 11.93 25 2 Alive

14 female 70 Distant 6.88 27 2 Dead - cancer
15 male 70  Regional 9.93 27 2 Alive

16 female 68 Distant 9.91 28 2 Dead - cancer
17  male 58 Localised 11.90 32 2 Dead - cancer
18 male 54 Distant 4.90 32 2 Dead - cancer
19 female 86 Localised 4.93 32 2 Alive

20 male 31 Localised 1.90 33 2 Dead - cancer
21 female 75 Localised 1.93 35 2 Alive

22 female 85 Localised 11.92 37 3  Alive

23 female 68 Distant 7.86 43 3 Dead - cancer
24  male 54 Regional 6.85 46 3 Dead - cancer
25 male 80 Localised 6.91 54 4 Alive

26 female 52 Localised 7.89 77 6 Alive

27 male 52 Localised 6.89 78 6 Alive

28 male 65 Localised 1.89 83 6 Alive

29 male 60 Localised 11.88 85 7 Alive

30 female 71 Localised 11.87 97 8 Alive

31 male 58 Localised 8.87 100 8 Alive

32 female 80 Localised 5.87 102 8 Dead - cancer
33 male 66 Localised 1.86 103 8 Dead - other
34 male 67 Localised 3.87 105 8 Alive

35 female 56 Distant 12.86 108 9 Alive




ACTUARIAL APPROACH

We suggest you start with the actuarial approach. Your task is to construct a life table
with the following structure.

year of fo-up l d w U D S(t)

[0-1) 35

[5-6)

We have already entered /; (number of people alive at the start of interval 1). The next
step is to add the number who experienced the event (d) and the number censored (w)
during the first year. From [, d, and w you will then be able to calculate I’ (effective num-
ber at risk), followed by p (conditional probability of surviving the interval) and finally
S(t), the cumulative probability of surviving from time zero until the end of the interval.

KAPLAN-MEIER APPROACH

To estimate survival using the Kaplan-Meier approach you will find it easiest to add a line
to the table at each and every time there is an event or censoring. We should use time in
months. The first time at which there is an event or censoring is time equal to 2 months.
The trick is what to do when there are both events and censorings at the same time.

time # at risk d w D S(t)

2 35
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101. Using Stata to validate the hand calculations done in question [100]

We will now use Stata to reproduce the same analyses done by hand calculation in question
100 although you can do this part without having done the hand calculations, since this
question also serves as an introduction to survival analysis using Stata. Our aim is to
estimate the cause-specific survivor function for the sample of 35 patients diagnosed with
colon carcinoma using both the Kaplan-Meier method and the actuarial method. In the
lectures we estimated the all-cause survivor function (i.e. all deaths were considered to
be events) using the Kaplan-Meier and actuarial methods whereas we will now estimate
the cause-specific survivor function (only deaths due to colon carcinoma are considered
events).

After starting Stata, you will first have to specify the data set you wish to analyse, that is
. use colon_sample, clear

Stata will search for this file in the current working directory. The pwd command will return
the name of the current working directory. If you need to change to another directory you
can use, for example, cd c:\survival\. The describe command will return a summary
of the data set structure (e.g., variable names) whereas the 1ist command will display
the values of variables.

In order to use the Stata 1table command (life table estimates of the survivor function)
we must construct a new variable indicating whether the observation period ended with an
event (the new variable is assigned code 1) or censoring (the new variable is assigned code
0). We will call this new variable csr_fail (cause-specific failure). The 1table command
is not a standard Stata survival analysis (st) command and does not require that the data
be stset.

. recode status (1=1) (nonmissing=0), gen(csr_fail)
There are many ways to create the new variable, the above approach is preferred because
missing values of status will remain missing. Even though we don’t have any missing

values, it is good programming practice to always write code that will handle missing
values appropriately.

The following command will give the actuarial estimates
. ltable surv_yy csr_fail

Alternatively, we could use

. ltable surv_mm csr_fail, interval(12)

Before most Stata survival analysis commands can be used (1table is an exception) we
must first stset the data using the stset command (see Section [I).

stset surv_mm, failure(status==1)



A listing of the Kaplan-Meier estimates is then obtained as follows
sts list

To graph the Kaplan-Meier estimates
sts graph

Note that we only have to stset the data once. You can also tell Stata to show the number
at risk either on the curve or in a table.

sts graph, atrisk
sts graph, risktable

Titles and axis labels can also be specified.
sts graph, risktable ///

title(Kaplan-Meier estimates of cause-specific survival) ///
xtitle(Time since diagnosis in months)
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EXERCISES

103. Melanoma: Comparing survival proportions and mortality rates by stage for
cause-specific and all-cause survival

The purpose of this exercise is to study survival of the patients using two alternative
measures - survival proportions and mortality rates. A second purpose is to study the
difference between cause-specific and all-cause survival.

. use melanoma, clear
stset surv_mm, failure(status==1)

(a)

Plot estimates of the survivor function and hazard function by stage.

sts graph, by(stage)
sts graph, hazard by(stage)

By default, the sts graph command plots Kaplan-Meier estimates of survival. If we
add the hazard option it shows estimates of the hazard function. Does it appear that
stage is associated with patient survival?

Stata tip: You may have found that each time you produce a graph Stata overwrites
the previous graph in the graph window. You can instruct Stata to open each graph
in a separate window by naming the graphs. This will give you the possibility to
compare graphs side by side.

sts graph, by(stage) name(survival)
sts graph, by(stage) name(hazard) hazard

You can use set autotabgraphs to control whether multiple graphs are created as
tabs within one window or as separate windows. Issue the following command to
make Stata present graphs as tabs within a single window (and store the setting
permanently).

set autotabgraphs on, permanently
Estimate the mortality rates for each stage using, for example, the strate command.
strate stage

What are the units of the estimated rates?

[The strate command, as the name suggests, is used to estimates rates. Look at the
help pages if you are not familiar with the command.]

If you haven’t already done so, estimate the mortality rates for each stage per 1000
person-years of follow-up.

[HINT: consider the scale() option to stset and the per() option to strate.]

Study whether survival is different for males and females (both by plotting the sur-
vivor function and by tabulating mortality rates).

sts graph, by(sex)
sts graph, hazard by(sex)

Is there a difference in survival between males and females? If yes, is the difference
present throughout the follow up?
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(e) The plots you made above were based on cause-specific survival (i.e., only deaths due
to cancer are counted as events, deaths due to other causes are censored). In the next
part of this question we will estimate all-cause survival (i.e., any death is counted as
an event). First, however, study the coding of vital status and tabulate vital status
by age group.

How many patients die of each cause? Does the distribution of cause of death depend
on age?

codebook status
. tab status agegrp

(f) To get all-cause survival, specify all deaths (both cancer and other) as events in the
stset command.

stset surv_mm, failure(status==1,2)

Now plot the survivor proportion for all-cause survival by stage. We name the graph
to be able to separate them in the graph window. Is the survivor proportion different
compared to the cause-specific survival you estimated above? Why?

sts graph, by(stage) name(anydeath, replace)

(g) It is more common to die from a cause other than cancer in older ages. How does
this impact the survivor proportion for different stages? Compare cause-specific and
all-cause survival by plotting the survivor proportion by stage for the oldest age group
(75+ years) for both cause-specific and all-cause survival. We suggest you copy the
code from the PDF file into the Stata do editor and run the code from there.

stset surv_mm, failure(status==1)
sts graph if agegrp==3, by(stage) ///
name (cancerdeath_75, replace) subtitle("Cancer")
stset surv_mm, failure(status==1,2)
sts graph if agegrp==3, by(stage) ///
name (anydeath_75, replace) subtitle("All cause")
. graph combine cancerdeath_75 anydeath_75

(h) Now estimate both cancer-specific and all-cause survival for each age group.

. use melanoma, clear
stset surv_mm, failure(status==1,2)
sts graph, by(agegrp) name(anydeathbyage, replace) subtitle("All cause")

stset surv_mm, failure(status==1)
sts graph, by(agegrp) name(cancerdeathbyage, replace) subtitle("Cancer")
. graph combine anydeathbyage cancerdeathbyage

Are there bigger differences between the age groups for cause-specific or for all-cause
survival?
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EXERCISES

104. Localised melanoma: Comparing estimates of cause-specific survival between
periods; first graphically and then using the log rank test

We will now analyse the full data set of patients diagnosed with localised skin melanoma.

Use Stata to estimate the cause-specific survivor function, using the Kaplan-Meier method
with survival time in months, separately for each of the two calendar periods 1975-1984
and 1985-1994. The following commands can be used

. use melanoma if stage == 1, clear
. stset surv_mm, failure(status==1)
. sts graph, by(year8594)

The variable year8594 takes the value 1 for patients diagnosed 1985-1994 and 0 for those
diagnosed 1975-1984.

(a)
(b)

Without making reference to any formal statistical tests, does it appear that patient
survival is superior during the most recent period?

The following commands can be used to plot the hazard function (instantaneous
mortality rate):

. sts graph, hazard by(year8594)

i. At what point in the follow-up is mortality highest?

ii. Does this pattern seem reasonable from a clinicial/biological perspective? [HINT:
Consider the disease with which these patients were classified as being diagnosed
along with the expected fatality of the disease as a function of time since diag-
nosis.|

Use the log rank test to determine whether there is a statistically significant difference
in patient survival between the two periods. The following command can be used:

. sts test year8594

What do you conclude?

An alternative test is the generalised Wilcoxon, which can be obtained as follows
. sts test year8594, wilcoxon

Haven’t heard of the log rank (or Wilcozon) test? It’s possible you may reach this
exercise before we cover the details of these tests during lectures. You should nev-
ertheless do the exercise and try and interpret the results. Both of these tests (the
log rank and the generalised Wilcoxon) are used to test for differences between the
survivor functions. The null hypothesis is that the survivor functions are equivalent
for the two calendar periods (i.e., patient survival does not depend on calendar period
of diagnosis).
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Estimate cause-specific mortality rates for each age group, and graph Kaplan-Meier
estimates of the cause-specific survivor function for each age group. Are there differ-
ences between the age groups? Is the interpretation consistent between the mortality
rates and the survival proportions?

strate agegrp, per(1000)
sts graph, by(agegrp)

What are the units of the estimated hazard rates? HINT: look at how you defined
time when you stset the data.

Repeat some of the previous analyses after using the scale () option to stset to rescale
time from months to years. This is equivalent to dividing the time variable by 12
so all analyses will be the same except the units of time will be different (e.g., the
graphs will have different labels).

stset surv_mm, failure(status==1) scale(12)
sts graph, by(agegrp)
strate agegrp, per(1000)

Study whether there is evidence of a difference in patient survival between males and
females. Estimate both the hazard and survival function and use the log rank test to
test for a difference.
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EXERCISES

110. Diet data: tabulating incidence rates and modelling with Poisson regression

Load the diet data and stset the data using time-on-study as the timescale.

. use diet, clear
. stset dox, id(id) fail(chd) origin(doe) scale(365.24) enter(doe)

(a)
(b)

—
o

(2)

(h)

Use the strate command to tabulate CHD incidence rates per 1000 person-years for
each category of hieng. Calculate (by hand) the ratio of the two incidence rates.
Use the command poisson to find the incidence rate ratio for the high energy group

compared to the low energy group and compare the estimate to the one you obtained
in the previous question:

. poisson chd hieng, e(y) irr

NOTE: Rates are calculated as events/person-time so when modelling rates we need
to let Stata know both of these quantities. chd is the event indicator and y is the
person time at risk for each individual. The irr option results in the estimates being
presented as estimated incidence rate ratios rather than parameter estimates (log
incidence rate ratios).

) Write out the model formulation of the poisson model in [110b|.

Grouping the values of total energy into just two groups does not tell us much about
how the CHD rate changes with total energy. It is a useful exploratory device, but
to look more closely we need to group the total energy into perhaps 3 or 4 groups.
In this example we shall use the cut points 1500, 2500, 3000, 4500. To check if these
cutpoints seem reasonable, type:

. histogram energy, normal
. sum energy, detail

Use the commands

. egen eng3=cut(energy), at(1500, 2500, 3000, 4500)
. tabulate eng3

to create a new variable eng3 coded 1500 for values of energy in the range 1500-2499,
2500 for values in the range 25002999, and 3000 for values in the range 3000-4500.

To estimate and plot the rates for different levels of eng3 try

. strate eng3, per(1000) graph

Calculate (by hand) the ratio of rates in the second and third levels to the first level.
Create your own indicator variables for the three levels of eng3 with

. tabulate eng3, gen(X)

Check the indicator variables with

. list energy eng3 X1 X2 X3 if eng3==1500
. list energy eng3 X1 X2 X3 if eng3==2500
. list energy eng3 X1 X2 X3 if eng3==3000
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Use poisson to compare the second and third levels with the first, as follows:
. poisson chd X2 X3, e(y) irr

Compare your estimates with those you obtained in

Write out the model formulation of the poisson model in .

Use poisson to compare the first and third levels with the second. Write out the
model formulation for this poisson model.

Repeat the analysis comparing the second and third levels with the first but this time
have Stata create the indicators automatically via the i. syntax. That is

. poisson chd i.eng3, e(y) irr

Without using st commands, calculate the total number of events during follow-
up, person-time at risk, and the crude incidence rate (per 1000 person-years), for
example with Stata commands for descriptive statistics (e.g., summarize). Confirm
your answer using strate or stptime.

[HINT: Remember that the total number of person-years is the number of persons at
risk multiplied with the mean follow up time among those persons.]
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EXERCISES

111. Localised melanoma: model cause-specific mortality with Poisson regression

In this exercise we model, using Poisson regression, cause-specific mortality of patients
diagnosed with localised (stage==1) melanoma.

In exercise we model cause-specific mortality using Cox regression and in exercise [131
we use flexible parametric models. The aim is to illustrate that these methods are very
similar.

The aim of these exercises is to explore the similarities and differences between these
approaches to modelling.

The following commands can be used to load and stset the data.

. use melanoma, clear
. keep if stage==
. stset surv_mm, failure(status==1) scale(12) id(id)

(a)

(b)

Plot Kaplan-Meier estimates of cause-specific survival as a function of calendar period
of diagnosis.

. sts graph, by(year8594)

i. During which calendar period (the early or the latter) is survival best?

ii. Now plot the estimated hazard function (cause-specific mortality rate) as a func-
tion of calendar period of diagnosis.

. sts graph, by(year8594) hazard

During which calendar period (the early or the latter) is mortality the lowest?
iii. Is the interpretation (with respect to how prognosis depends on period) based on

the hazard consistent with the interpretation of the survival plot?
Use the strate command to estimate the cause-specific mortality rate for each cal-
endar period.

. strate year8594, per(1000)

During which calendar period (the early or the latter) is mortality the lowest? Is this
consistent with what you found earlier? If not, why the inconsistency?

The reason for the inconsistency between parts [111al and [111b| was confounding by
time since diagnosis. The comparison in part was adjusted for time since di-
agnosis (since we compare the differences between the curves at each point in time)
whereas the comparison in part was not. Understanding this concept is central
to the remainder of the exercise so please ask for help if you don’t follow.

Two approaches for controlling for confounding are ‘restriction’ and ‘statistical ad-
justment’. We will first use restriction to control for confounding. That is we will
stset the data again but use the exit(time 120) option to restrict the potential
follow-up time to a maximum of 120 months. Individuals who survive more than 120
months are censored at 120 months.

. use melanoma, clear
. keep if stage==
. stset surv_mm, failure(status==1) scale(12) id(id) exit(time 120)
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i. Use the strate command to estimate the cause-specific mortality rate for each

calendar period.
. strate year8594, per(1000)
During which calendar period (the early or the latter) is mortality the lowest? Is
this consistent with what you found in part

ii. Calculate by hand the ratio (85-94/75-84) of the two mortality rates (i.e., a
mortality rate ratio) and interpret the estimate (i.e., during which period is
mortality higher/lower and by how much).

iii. Now use Poisson regression to estimate the same mortality rate ratio.
. Streg i.year8594, dist(exp)

iv. Write out the model formulation from [111(c)iii

NOTE: streg is one of several Stata commands for performing Poisson regression.
The model could also be fitted using the poisson or glm commands.

. gen risktime=_t-_t0

. poisson _d i.year8594 if _st==1, exp(risktime) irr
. glm _d i.year8594 if _st==1, family(poisson) eform lnoffset(risktime)

However, if you have stset/stsplit the data it is recommended that you use streg
since streg understands and respects the internal st variables (_st, _t, _t0, and

=Ly -

_d). In particular, ‘trimmed’ person-time will be ignored by streg but not by the
poisson command.

Strictly speaking, streg fits parametric survival models. A parametric survival model
assuming survival times are exponentially distributed (dist (exp)) implies a constant
hazard and a Poisson process for the number of events (i.e., Poisson regression).

In order to adjust for time since diagnosis (i.e., adjust for the fact that we expect mor-
tality to depend on time since diagnosis) we need to split the data by this timescale.
We will restrict our analysis to mortality up to 10 years following diagnosis.

. stsplit fu, at(0(1)10) trim
NOTE: The trim option instructs Stata to ignore time-at-risk outside the interval

[0,10] (i.e., after 10 years subsequent to diagnosis). Since we have already made this
restriction using stset there should not be any time ‘trimmed’.

Now tabulate (and produce a graph of) the rates by follow-up time.
. strate fu, per(1000) graph

Mortality appears to be quite low during the first year of follow-up. Does this seem
reasonable considering the disease with which these patients have been diagnosed?

Compare the plot of the estimated rates to a plot of the hazard rate as a function of
continuous time.

. sts graph, hazard

Is the interpretation similar? Do you think it is sufficient to classify follow-up time
into annual intervals or might it be preferable to use, for example, narrower intervals?
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EXERCISES

Use Poisson regression to estimate incidence rate ratios as a function of follow-up
time.

. streg i.fu, dist(exp)

Does the pattern of estimated incident rate ratios mirror the pattern you observed in
the plots?

i. Write out the model formulation.

Now estimate the effect of calendar period of diagnosis while adjusting for time since
diagnosis. Before fitting this model, predict what you expect the estimated effect to
be (i.e., will it be higher, lower, or similar to the value of 0.8831852 we obtained in

part

. streg i.fu i.year8594, dist(exp)

Is the estimated effect of calendar period of diagnosis consistent with what you ex-
pected?

Now control for age, sex, and calendar period.

. streg i.fu i.agegrp i.year8594 i.sex, dist(exp)

i. Interpret the estimated hazard ratio for the parameter labelled agegrp 60-74,
including a comment on statistical significance.

ii. Is the effect of calendar period strongly confounded by age and sex? That is,
does the inclusion of sex and age in the model change the estimate for the effect
of calendar period?

iii. Perform a Wald test of the overall effect of age and interpret the results.

. test 1l.agegrp 2.agegrp 3.agegrp
Is the effect of sex modified by calendar period (whilst adjusting for age and follow-
up)? Fit an appropriate interaction term to test this hypothesis and write out the
model formulation for the model that you fit.

Based on the interaction model you fitted in exercise|111j| estimate the hazard ratio
for the effect of sex (with 95% confidence interval) for each calendar period.

ADVANCED: Do this with each of the following methods and confirm that the results
are the same:

i. Using hand-calculation on the estimates from exercise
ii. Using the estimates from exercise and the lincom command.
. lincom 2.sex + 1.year8594#2.sex, eform
iii. Creating appropriate dummy variables that represent the effects of sex for each
calendar period.
. gen sex_early=(sex==2)*(year8594==0)
. gen sex_latter=(sex==2)*(year8594==1)
. streg i.fu i.agegrp i.year8594 sex_early sex_latter, dist(exp)
iv. Using Stata 11 syntax to repeat the previous model.
. streg i.fu i.agegrp i.year8594 i.year8594#i.sex, dist(exp)
Now fit a separate model for each calendar period in order to estimate the hazard
ratio for the effect of sex (with 95% confidence interval) for each calendar period.
Why do the estimates differ from those you obtained in the previous part?

. streg i.fu i.agegrp i.sex if year8594==0, dist(exp)
. streg i.fu i.agegrp i.sex if year8594==1, dist(exp)

Can you fit a single model that reproduces the estimates you obtained from the
stratified models? Try:

. streg i.fu##i.year8594 i.agegrp##i.year8594 i.year8594##i.sex, dist(exp)
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112. Diet data: Using Poisson regression to study the effect of energy intake ad-
justing for confounders on two different timescales

Use Poisson regression to study the association between energy intake (hieng) and CHD
adjusted for potential confounders (job, BMI). We know that people who expend a lot of
energy (i.e., are physically active) require a higher energy intake. We do not have data on
physical activity but we are hoping that occupation (job) will serve as a surrogate measure
of work-time physical activity (conductors on London double-decker busses expend energy
walking up and down the stairs all day).

Fit models both without adjusting for ‘time’ and by adjusting for attained age (you will
need to split the data) and time-since-entry and compare the results.

(a)

(b)

Rates can be modelled on different timescales, e.g., attained age, time-since-entry,
calendar time. Plot the CHD incidence rates both by attained age and by time-since-
entry. Is there a difference? Do the same for CHD hazard by different energy intakes
(hieng).

. use diet, clear

.* Timescale: Attained age
stset dox, id(id) fail(chd) origin(dob) enter(doe) scale(365.24)
sts graph, hazard
sts graph, by(hieng) hazard

.* Timescale: Time-since-entry
stset dox, id(id) fail(chd) origin(doe) enter(doe) scale(365.24)
sts graph, hazard
sts graph, by(hieng) hazard

Model the rate using Poisson regression, without adjusting for any timescale. What
is the effect of hieng on CHD? What assumption does this model make on the shape
of the underlying incidence rate over time?

. poisson chd i.hieng, e(y) irr

Adjust for BMI and job. Is there evidence that the effect of energy intake on CHD
is confounded by BMI and job? Write out the model formulation.

. gen bmi=weight/(height/100*height/100)
. poisson chd i.hieng i.job bmi, e(y) irr

Firstly, let’s adjust for the timescale attained age. To do this in Poisson regression
you must split the data on timescale age. First use stset (with origin date of birth)
and then use stsplit to generate agebands.

stset dox, id(id) fail(chd) origin(dob) enter(doe) scale(365.24)
stsplit ageband, at(30,50,60,72) trim
. list id _tO0 _t ageband y in 1/10

As the poisson command is not an st command, you must keep track of the risktime
yourself. Why is the y variable not correct anymore? Generate a new variable,
risktime, which contains the risktime for each split record.
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. gen risktime=_t-_t0
. list id _tO _t ageband y risktime in 1/10

You must also keep track of the event variable, as chd will not be valid after the split.

. tab ageband chd, missing
. tab ageband _d, missing

Now fit the model for CHD, both without and with the adjustment for job and bmi.
Is the effect of hieng on CHD confounded by age, BMI or job?

. poisson _d i.hieng i.ageband, e(risktime) irr
. poisson _d i.hieng i.job bmi i.ageband, e(risktime) irr

What assumption is being made about the shape of the baseline hazard (HINT: the
baseline hazard takes the shape of the timescale)?

Secondly, do the same analysis, but now adjust for the timescale time-since-entry.
(You must read the data in again, as you now want to split on another timescale.
This is strictly not necessary, but to avoid mistakes it is generally a good idea to start
over again.)

. use diet, clear
. gen bmi=weight/(height/100*height/100)

Specify time-since-entry as the timescale by specifying date of entry as the time origin.

stset dox, id(id) fail(chd) origin(doe) enter(doe) scale(365.24)

. stsplit fuband, at(0,5,10,15,22) trim
. list id _tO _t fuband y in 1/10

. gen risktime=_t-_tO0
. list id _tO0 _t fuband y risktime in 1/10

. tab fuband chd, missing
. tab fuband _d, missing

. poisson _d i.hieng i.fuband, e(risktime) irr
. poisson _d i.hieng i.job bmi i.fuband, e(risktime) irr

Compare the results with the analysis adjusted for attained age. Are there any
differences? Why (or why not)? Go back to the graphs at the beginning of the
exercise and look for explanations.

(f) Repeat the exercise using streg. What is the advantage/disadvantage of using streg?
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120. Localised melanoma: modelling cause-specific mortality using Cox regression

In exercise we modelled the cause-specific mortality of patients diagnosed with localised
melanoma using Poisson regression. We will now model cause-specific mortality using Cox
regression and compare the results to those we obtained using the Poisson regression model.

We will start with modelling the effect of calendar period. To fit a Cox proportional hazards
model (for cause-specific survival) with calendar period as the only explanatory variable,
the following commands can be used. Note that we are censoring all survival times at 120
months (10 years) in order to facilitate comparisons with the Poisson regression model in

exercise [[111

. use melanoma

. keep if stage ==
stset surv_mm, failure(status==1) exit(time 120) id(id)
stcox i.year8594

(a) Interpret the estimated hazard ratio, including a comment on statistical significance.

(b) (This part is more theoretical and is not required in order to understand the remaining
parts.)
Stata reports a Wald test of the null hypothesis that survival is independent of cal-
endar period. The test statistic (and associated P-value) is reported in the table of
parameter estimates (labelled z). Under the null hypothesis, the test statistic has a
standard normal (Z) distribution, so the square of the test statistic will have a chi
square distribution with one degree of freedom.
Stata also reports a likelihood ratio test statistic of the null hypothesis that none of
the parameters in the model are associated with survival (labelled LR chi2(1)). In
general, this test statistic will have a chi-square distribution with degrees of freedom
equal to the number of parameters in the model. For the current model, with only one
parameter, the test statistic has a chi square distribution with one degree of freedom.
Compare these two test statistics with each other and with the log rank test statistic
(which also has a x? distribution) calculated in question (you should, however,
recalculate the log rank test since we have restricted follow-up to the first 10 years in
this exercise). Would you expect these test statistics to be similar? Consider the null
and alternative hypotheses of each test and the assumptions involved with each test.

(¢) Now include sex and age (in categories) in the model.
stcox i.sex i.year8594 i.agegrp

i. Interpret the estimated hazard ratio for the parameter labelled agegrp 2, in-
cluding a comment on statistical significance.
ii. Perform a Wald test of the overall effect of age and interpret the results.

. test 1.agegrp 2.agegrp 3.agegrp
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(d)

(e)

(f)

(2)

EXERCISES

Perform a likelihood ratio test of the overall effect of age and interpret the results.
The following commands can be used

stcox i.sex i.year8594 i.agegrp
. est store A
. stcox i.sex i.year8594
. lrtest A

Compare your findings to those obtained using the Wald test. Are the findings
similar? Would you expect them to be similar?

The model estimated in question is similar to the model estimated in ques-
tion [1T1

i. Both models adjust for sex, year8594, and i.agegrp but the Poisson regres-
sion model in question appears to adjust for an additional variable (i.fu).
Is the Poisson regression model adjusting for an additional factor? Explain.

ii. Would you expect the parameter estimate for sex, period, and age to be similar
for the two models? Are they similar?

iii. Do both models assume proportional hazards? Explain.
Write out the model formulation for the following models or predicted rates

i. the Poisson model used in [[111

ii. the Cox models used in and Make sure you understand what each
parameter means. What is the intercept in the Poisson regression model? What
is the intercept in the Cox models in [120a] and [T20c?

iii. using the model from write down the mathematical expression (linear pre-
dictor) for the rate of males diagnosed 1985-1994 in agegroup 2. Do the same
for the rate of females diagnosed 1985-1994 in agegroup 2. Using these two
rates, write down the mathematical expression for the hazard ratio of females to
males diagnosed 1985-1994 in agegroup 2. Comment on the proportional haz-
ard assumption and how that relates to the expression and/or parameter(s) you
obtained for the hazard ratio.

Following is some code for estimating and comparing the Cox and Poisson regression
models.

use melanoma if stage==1, clear

stset surv_mm, failure(status==1) id(id) exit(time 120)
stcox i.year8594 i.sex i.agegrp

est store Cox

/* split on time since diagnosis (l-year intervals) */
stsplit fu, at(0(12)120) trim

streg i.fu i.year8594 i.sex i.agegrp, dist(exp)
est store Poisson
est table Cox Poisson, eform equations(1)

ADVANCED: By splitting at each failure time we can estimate a Poisson regression
model that is identical to the Cox model. This model might take several minutes to
estimate and you may need to reset the values of memory and matsize.
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use melanoma, clear

keep if stage ==

stset surv_mm, failure(status==1) exit(time 120) id(id) noshow
stsplit, at(failures) riskset(riskset)

quietly tab riskset, gen(interval)

streg interval* i.sex i.year8594 i.agegrp, dist(exp)
est store Poisson_fine

/* Compare the estimates and SEs */

est table Cox Poisson_fine Poisson, eform equations(1) ///
keep(2.sex 1.year8594 1.agegrp 2.agegrp 3.agegrp) ///

se b(%9.6f) se(%9.6f) modelwidth(12) ///

title("Hazard ratios and standard errors for various models")

ADVANCED: Split the data finely (e.g., 3-month intervals) and model the effect of
time using a restricted cubic spline.

use melanoma if stage==1, clear

stset surv_mm, failure(status==1) id(id) exit(time 120)

/* split on time since diagnosis (l-month intervals) */
stsplit fu, at(0(1)120) trim

/* Create basis for restricted cubic spline */

mkspline fu_rcs=fu, cubic

streg fu_rcs* i.year8594 i.sex i.agegrp, dist(exp)

predict xb, xb

twoway line xb fu if year8594==0 & sex==1 & agegrp==1, sort
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121. Examining the proportional hazards hypothesis (localised melanoma)

(a)

For the localised melanoma data with 10 years follow-up, plot the instantaneous
cause-specific hazard for each calendar period. The following commands can be used

. use melanoma if stage == 1, clear
. stset surv_mm, failure(status==1) id(id) exit(time 120) scale(12)
. sts graph, hazard by(year8594)

Make a rough estimate of the hazard ratio for patients diagnosed 198594 to those
diagnosed 1975-84. In part (d) you will fit a Cox model and check your estimate.

Now plot the instantaneous cause-specific hazard for each calendar period using a log
scale for the y axis (use the option yscale(log)). What would you expect to see if
a proportional hazards assumption were appropriate? Do you see it?

Another graphical way of checking the proportional hazards assumption is to plot the

log cumulative cause specific hazard function for each calendar period. The command
for plotting this function is

. stphplot, by(year8594)

What would you expect to see if a proportional hazards assumption were appropriate?
Do you see it?

Compare your estimated hazard ratio from part (a) with the one from a fitted Cox
model with calendar period as the only explanatory variable. Are they similar?
Now fit a more complex model and use graphical methods to explore the assumption

of proportional hazards by calendar period. For example,

. stcox i.sex i.year8594 i.agegrp
. estat phtest, plot(l.year8594)

What do you conclude?

Do part (a)—(e) but now for the variable agegrp. What are your conclusions regarding
the assumption of proportional hazards?

Now formally test the assumption of proportional hazards using

. stcox i.sex i.year8594 i.agegrp
. estat phtest, detail

Are your conclusions from the test coherent with your conclusions from the graphical
assessments?

Estimate separate age effects for the first two years of follow-up (and separate esti-
mates for the remainder of the follow-up) while controlling for sex and period. Do
the estimates for the effect of age differ between the two periods of follow-up?
There are two ways to fit time-varying effects: 1) the tvc option in stcox or 2) by
splitting on time using stsplit.
Using tvc:
. tab(agegrp), gen(agegrp)
. stcox i.sex i.year8594 agegrp2 agegrp3 agegrp4, ///

tvc(agegrp2 agegrp3 agegrp4) texp(_t>=2)
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Using stsplit:

. stsplit fuband, at(0,2)
. list id _tO0 _t fu in 1/10

. stcox i.sex i.year8594 i.agegrp##i.fuband

These are simply two alternative syntaxes for fitting the same model with the same
parameterizations. They give the so-called default parameterizations for interaction
effects. We see effects of age (i.e., the hazard ratios) for the period 0-2 years sub-
sequent to diagnosis along with the interaction effects. An advantage of the default
parameterisation is that one can easily test the statistical significance of the inter-
action effects. Before going further, test whether the age*follow-up interaction is
statistically significant (using a Wald and/or LR test).

(i) Often we wish to see the effects of exposure (age) for each level of the modifier (time
since diagnosis). That is, we would like to complete the table below with relevant
hazard ratios. To get the effects of age for the period 2+ years after diagnosis, using
the default parametrization, we must multiply the hazard ratios for 0-2 years by
the appropriate interaction effect. Now let’s reparameterise the model to directly
estimate the effects of age for each level of time since diagnosis. This is easily done
in Stata (version 11 or later) using single #’s

. stcox i.sex i.year8594 i.fuband i.fuband#i.agegrp

0-2 years | 24 years
Agegrp0 1.00 1.00
Agegrpl
Agegrp2
Agegrp3

Fill in the table above. Does the effect of age appear different before and after 2
years?

(j) Write down the model formulation for the Cox model used in (h).
i. Use that model formula to express the rates (in terms of the linear predictor) in

each of the eight cells of the table in (i). Express the rates for males diagnosed
1975-84.

ii. Use the rates from i. to obtain an expression for the hazard ratio of agegroup3
to agegroupO in early followup 0-2years, for males diagnosed 1975-84.

iii. Use the rates from i. to obtain an expression for the hazard ratio of agegroup3
to agegroupO in late followup 2+years, for males diagnosed 1975-84.

(k) ADVANCED: Fit an analogous Poisson regression model. Are the parameter esti-
mates similar? HINT: You will need to split the data by time since diagnosis.
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123. Cox model for cause-specific mortality for melanoma (all stages)

Use Cox regression to model the cause-specific survival of patients with skin melanoma
(including all stages).

(a)
(b)

()

(d)
(e)

First fit the model with sex as the only explanatory variable. Does there appear to
be a difference in survival between males and females?

Is the effect of sex confounded or mediated by other factors (e.g. age, stage, subsite,
period)? After controlling for potential confounders or mediators, does there still
appear to be a difference in survival between males and females?

Consider the hypothesis that there exists a class of melanomas where female sex hor-
mones play a large role in the etiology. These hormone related cancers are diagnosed
primarily in women and are, on average, less aggressive (i.e., prognosis is good). If
such a hypothesis were true we might expect the effect of sex to be modified by age
at diagnosis (e.g., pre versus post menopausal). Test whether this is the case.

Decide on a ‘most appropriate’ model for these data, given the research question
described above. Be sure to evaluate the proportional hazards assumption.

Write down the model formulation for the Cox models used in (a), (b) and (c).
i. Use the formula for model (c), to express the linear predictor for the rate among
females in the highest agegroup while all other variables are at the reference level.

ii. Write down the expression for the hazard ratio comparing the females in the
highest agegroup to the males in the highest agegroup, while all other variables
are at the reference level.
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124. Modelling the diet data using Cox regression

(a) Fit the following Poisson regression model to the diet data (we fitted this same model
in question [110f).

. use diet, clear
. poisson chd i.hieng, e(y) irr

Now fit the following Cox model.

. stset dox, id(id) fail(chd) enter(doe) origin(doe) scale(365.24)
. stcox i.hieng

i. On what scale are we measuring ‘time’? That is, what is the timescale?

ii. Is it correct to say that both of these models estimate the effect of high energy
on CHD without controlling for any potential confounders? If not, how are these
models conceptually different?

iii. Would you expect the parameter estimates for these two models to be very dif-
ferent? Is there a large difference?

(b) stset the data with attained age as the timescale and refit the Cox model. Is the
estimate of the effect of high energy different? Would we expect it to be different?

(c) Write down themodel formulation for the Poisson and Cox models used in (a).
i. Comment on the difference between the Poisson and Cox model, and explain why
(or why not) they are different conceptually.

ii. Write down the model formulation for the Cox model used in (b). Comment
on how this Cox model differs from the Cox model in (a), in particular the
interpretation of the parameters.
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125. Estimating the effect of a time-varying exposure — the bereavement data

These data were used to study a possible effect of marital bereavement (loss of husband
or wife) on all-cause mortality in the elderly. The dataset was extracted from a larger
follow-up study of an elderly population and concerns subjects whose husbands or wives
were alive at entry to the study. Thus all subjects enter as not bereaved but may become
bereaved at some point during follow—up. The variable dosp records the date of death of
each subject’s spouse and takes the value 1/1/2000 where this has not yet happened.

(a)

Load the data with

. use brv, clear
. desc

To see how the coding works for couples try
. list id sex doe dosp dox fail if couple==3

for a couple, both of whom die during follow—up. Draw a picture showing the follow—
up for both subjects, and mark the dates of entry exit and death of spouse on it.
Try

. list id sex doe dosp dox fail if couple==

for a couple, one of whom dies during follow—up,

. list id sex doe dosp dox fail if couple==19

for a couple, neither of whom die during follow—up, and
. list id sex doe dosp dox fail if couple==7

for a couple where only data on one individual is available.

Set the st variables, calculate the mortality rate per 1000 years for men and for
women, and find the rate ratio comparing women (coded 2) with men (coded 1),
using

. stset dox, fail(fail) origin(dob) entry(doe) scale(365.24) id(id)
. strate sex, per(1000)
. streg sex, dist(exp)

i. What dimension of time did we use as the timescale when we stset the data?
Do you think this is a sensible choice?
ii. Which gender has the highest mortality? Is this expected?

iii. Could age be a potential confounder? Does age at entry differ between males
and females? Later we will estimate the rate ratio while controlling for age.

Breaking records into pre and post bereavement. In these data a subject
changes exposure status from not bereaved to bereaved when his or her spouse dies.
The first stage of the analysis therefore is to partition each follow—up into a record de-
scribing the period of follow-up pre-bereavement and (for subjects who were bereaved
during the study) the period post—bereavement.
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This can be done using stsplit:

. stsplit brv, after(time=dosp) at(0)
. recode brv -1=0 0=1

This syntax of stsplit splits the records at the death of spouse (or 1/1/2000 if the
spouse is still alive). The variable brv takes the values —1 for the pre bereavement
part and 0 for the post bereavment part and the recode command changes these to
0 and 1 respectively.

To see the effect on couple 3

. list id sex doe dosp dox brv _tO _t _d fail if couple==3

We see that, of this couple, only the woman was bereaved during follow-up (it is
impossible for both of a couple to contribute person-time to the bereaved category).
This woman was classified as ‘not bereaved’ during age 83.87 and 84.41 and ‘bereaved’
during ages 84.41 and 84.82. Study the data for the other couples mentioned above.

Now find the (crude) effect of bereavement
. streg brv, dist(exp)

Since there is a strong possibility that the effect of bereavement is not the same for
men as for women, use streg to estimate the effect of bereavement separately for
men and women. Do this both by fitting separate models for males and females (e.g.
streg brv if sex==1) as well as by using a single model with an interaction term
(you may need to create dummy variables). Confirm that the estimates are identical
for these two approaches.

Controlling for age. There is strong confounding by age. Use stsplit to expand
the data by 5 year age—-bands, and check that the rate is increasing with age. Use
streg to find the effect of bereavement controlled for age. If you wish to study the
distribution of age then it is useful to know that age at entry and exit are stored in
the variables _t0 and _t respectively.

Now estimate the effect of bereavement (controlled for age) separately for each sex.

We have assumed that any effect of bereavement is both immediate and permanent.
This is not realistic and we might wish to improve the analysis by further subdividing
the post—bereavement follow—up. How might you do this? (you are not expected to
actually do it)

Analysis using Cox regression. We can also model these data using Cox regres-
sion. Provided we have stset the data with attained age as the time scale and split
the data (using stsplit) to obtain separate observations for the bereaved and non-

bereaved person-time the following command will estimate the effect of bereavement
adjusted for attained age.

. stcox brv

That is, we do not have to split the data by attained age (although we can fit the
model to data split by attained age and the results will be the same).

Use the Cox model to estimate the effect of bereavement separately for males and
females and compare the estimates to those obtained using Poisson regression.
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130. Melanoma: Understanding splines

Stata addon required! This exercise requires the Stata user-written command rcsgen.
See Section for details and installation instructions.

This question is for those who want to understand the calculations made when using splines
and how the constraints enable a smooth function to be fitted. This will be demonstrated
by fitting a Poisson model with no covariates (other than follow-up time). First load the
melanoma data with follow-up to 10 years and split the time scale with intervals of one

month.

. use melanoma

. gen female = sex ==

. stset surv_mm, failure(status=1,2) scale(12) exit(time 120) id(id)
. stsplit fu, every(‘=1/127)

. gen risktime = _t - _tO0

. collapse (sum) d = _d risktime (min) start=_t0 (max) end=_t, ///

(a) Fit a Poisson model for all cause survival with one parameter for each interval. Predict

by(fu female year8594 agegrp)

the hazard function and plot this against follow-up time.

. egen interval = group(start)
. gen midtime = (start + end)/2
. glm d ibn.interval, family(poisson) link(log) lnoffset(risktime) nocons

// predict the baseline (one parameter for each interval)
. predict haz_grp, nooffset
. replace haz_grp = haz_grp*1000
. twoway (scatter haz_grp midtime) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
ylabel(5 10 20 50 100 150, angle(h)) ///
name (piecewise, replace)

How many parameters have been used to estimate the baseline hazard?

We will now use piecewise linear splines. To simplify things we will only have one
knot at 1.5 years. We will first fit the equivalent of two separate linear functions, one

before the knot and one after the knot. The model is as follows,

Inh(t) = Bo + pit + Bt > 1.5) + B3(t — 1.5) +

Note the use of the ‘+’ notation, where u4 = u if w > 0 and 0 otherwise. Write down

the functional form of the linear functions before and after the knot at 1.5 years.

Now fit this model and compare the fitted values to the piecewise estimate in part

130al

. gen lin_sl1 = midtime
. gen lin_int2 = (midtime>1.5)
. gen lin_s2 = (midtime - 1.5)*(midtime>1.5)
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// Fit two separate linear regression lines (4 parameters)
. glm d lin_s1 lin_int2 lin_s2 , family(poisson) link(log) lnoffset(risktime)

. predict haz_linl, nooffset
. replace haz_linl = haz_1in1*1000
. twoway (scatter haz_grp midtime) ///
(line haz_linl midtime if midtime<=1, lcolor(red)) ///
(line haz_linl midtime if midtime>1, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(1.5, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (linearl, replace)

Calculate the intercept and gradient before the knot and after the knot at 1.5 years.

Now we will force the function to be continuous at the knot. This can be done by
dropping the second intercept term. Thus the model is,

Inh(t) = Bo + Sit + a2t — 1.5) 4

Fit this model and plot the estimated hazard against the piecewise estimates.

// Force the functions to join at the knot (3 parameters)
. glm d lin_s1 lin_s2 , family(poisson) link(log) lnoffset(risktime)

. predict haz_1lin2, nooffset

. replace haz_1lin2 = haz_1in2%1000

. twoway (scatter haz_grp midtime) ///
(line haz_1lin2 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(1.5, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend (off) ///
name (linear2, replace)

Calculate the gradient before the knot and after the knot at 1.5 years.

We will now perform a similar exercise for cubic splines. Again we will have a single
knot, this time at 2 years. We will fit the equivalent two separate cubic functions, one
before the knot and one after the knot, and then start to introduce the constraints
that ensure the function is smooth. There will be eight parameters in the model (3
polynomial terms and an intercept for each of the two intervals).

3 3
Inh(t) = > Beth + 3 Buralt —2)%
k=0 k=0
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(e)

EXERCISES

Fit this model, predict the hazard and plot, comparing the fit to the piecewise esti-
mates.

. gen cubic_sl1 = midtime

. gen cubic_s2 = midtime~2

. gen cubic_s3 = midtime~3

. gen cubic_int = midtime>2

. gen cubic_lin = (midtime - 2)*(midtime>2)

. gen cubic_quad = ((midtime - 2)°2)*(midtime>2)
. gen cubic_s4 = ((midtime - 2)~3)*(midtime>2)

. glm d cubicx , family(poisson) link(log) lnoffset(risktime)
. predict haz_cubicl, nooffset
. replace haz_cubicl = haz_cubic1*1000
. twoway (scatter haz_grp midtime) ///
(line haz_cubicl midtime if midtime<=2, lcolor(red)) ///
(line haz_cubicl midtime if midtime>2, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(2, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (cubicl, replace)

We will now constrain the function to be continuous at the knot. This can be done
by dropping the second intercept term. The model becomes,

3 3
Inh(t) =>" Buth + 3 Burs(t — 2)%
k=0 k=1

(The subscript for the second sum, starts at k = 1 rather than k& = 0.

Fit this model by excluding the variable cubic_int from the model. Plot the predicted
hazard to ensure that it is continuous at the knot. Explain why the function does
not look smooth.

Now we will force the first derivative to be continuous. This can be done by dropping
the second linear term from the model.

3 3
Inh(t) = Z Brt® + Z Brya(t —2)%
k=0 k=2

Fit this model by excluding the variable cubic_1lin from the model. Plot the predicted
hazard to ensure that it is continuous at the knot. Does the function look smoother?

Finally we will force the second derivative to also be continuous. This can be done
by dropping the second quadratic term from the model.

3
Inh(t) =Y Bt* + Ba(t — 2)3
k=0

Fit this model by excluding the variable cubic_quad from the model. Plot the pre-
dicted hazard. Compare the fits of the models with the different constraints.
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For the models we fit we usually use restricted cubic splines. These are constrained
to be linear before the first knot and after the final knot. We nearly always put the
boundary knots at the minimum and maximum event times and so the restriction of
linearity is not actually within the range of our data, but the linear restrictions help
to stabalise the estimated function. A good derivation of how the linear restrictions
are imposed can be found in Appendix B of Royston and Parmar (2002).

Generate the restricted cubic spline basis functions with 4 degrees of freedom (5
knots). As we have collapsed data we need to use the fw(d) (frequency weights)
option as we place the knots evenly acording to the distribution of events times, i.e.
in this case at the 0** (minimum), 25, 50", 75" and 100*" (maximum) centiles of
the distribution of event times.

. rcsgen midtime, gen(rcs) df(4) fw(d)
. global knots ‘r(knots)’

We have stored the location of the knots in a global macro, so we can add them to
later plots.

The first spline variable, rcsi, is just copy of our x variable, midtime. Fit a model
where you assume that the log hazard function is a linear function of log time and
plot the fitted function.

. glm d rcsl, family(poisson) link(log) lnoffset(risktime)

. estimates store rcsl

. predict haz_rcsl, nooffset

. replace haz_rcsl = haz_rcs1*1000

. twoway (scatter haz_grp midtime) ///
(line haz_rcsl midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name(rcsl, replace)

Does this model look a good fit?

(j) Now add the remaining spline variables, rcs2-rcs4, to the model and perform a

likelihood ratio test to see if there is evidence of non linearity.

. glm d rcs*, family(poisson) link(log) lnoffset(risktime)
. estimates store rcs2
. lrtest rcsl rcs2

Plot the fitted function against the piecewise estimates and show the location of the
knots as reference lines.

. predict haz_rcs2, nooffset

. replace haz_rcs2 = haz_rcs2*1000

. twoway (scatter haz_grp midtime) ///
(line haz_rcs2 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline (\$knots, lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (rcs2, replace)
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(k) We will now show the restriction of linearity beyond the boundary knots by moving
them within the range of the data. Recalculate the restricted cubic splines with knots
at 1, 2 and 3 years. Plot the estimated hazard function.

. drop rcs*

. rcsgen midtime, gen(rcs) knots(l 2 3) fw(d)

. global knots ‘r(knots)’

. glm d rcs*, family(poisson) link(log) lnoffset(risktime)

. predict haz_rcs3, nooffset

. replace haz_rcs3 = haz_rcs3*1000

. twoway (scatter haz_grp midtime) ///
(line haz_rcs3 midtime, lcolor(red)) ///
, xtitle("Years from diagnosis") ///
ytitle("Baseline hazard (1000 pys)") ///
xline(\$knots , lcolor(black) lpattern(dash)) ///
ylabel(5 10 20 50 100 150, angle(h)) ///
legend(off) ///
name (rcs3, replace)
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131. Modelling cause-specific mortality using flexible parametric models

Stata addon required! This exercise requires the Stata user-written command stpm2.
See Section 2.2 for details and installation instructions.

We will now fit some models with the linear predictor on the log cumulative hazard scale
using flexible parametric survival models (Royston-Parmar models).

Load and stset the Melanoma data.

. use melanoma, clear
. keep if stage ==
. stset surv_mm, failure(status==1) exit(time 120.5) scale(12)

(a) Plot a Kaplan-Meier curve for the study population as a whole.
sts graph

(b) Fit a Weibull model using stpm2. In a Weibull model the log cumulative hazard
function is a linear function of log(time). This can be fitted with the scale (hazard)
and df (1) options.

stpm2, scale(hazard) df(1)
predict sl1, surv
predict hl, hazard

The two prediction commands will estimate the survival and hazard functions respec-
tively.
Overlay the estimated survival function from a Weibull model with the Kaplan-Meier
curve.

sts graph, addplot(line sl _t, sort) name(kml, replace)

Does the Weibull model fit well? What assumptions are made about the shape of the
hazard function with a Weibull model? Is it possible to assess this from looking at
the survival curve?

(c) In Stata we can obtain an estimate of the hazard function using weighted kernel-
density estimation using sts graph, hazard. I usually use the kernel (epan2) op-
tion as this generally works better than the default.

Plot this hazard estimate, overlaying the estimated hazard from the Weibull model.

sts graph, hazard kernel(epan2) addplot(line hl _t, sort) name(hazardl, replace)

You should now understand why the Weibull model does not fit very well.

(d) We will now relax the assumption of linearity of the log cumulative hazard with
respect to log time by incorporating restricted cubic splines into the model. We will
initially use 4 df (5 knots) using the default knot locations.

stpm2, scale(hazard) df(4)
predict s4, surv
predict h4, hazard

Now add the predictions of the survival and hazard functions to the non-parametric
survival and hazard functions.
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sts graph, addplot(line s4 _t, sort) name(km4, replace) ///
xline(‘e(bhknots)’ ‘e(boundary_knots)’)

sts graph, hazard kernel(epan2) addplot(line h4 _t, sort) name(hazard4, replace) ///
line(‘e(bhknots)’ ‘e(boundary_knots)’)

Are the fitted curves better than the Weibull model?
Fit a Cox model with the diagnosis period (year8594 as the only covariate.

. stcox year8594

Fit the equivalent flexible parametric survival model on the log cumulative hazard
scale with 4 degrees of freedom for the baseline.

. stpm2 year8594, scale(hazard) df(4) eform

Compare the estimated hazard ratio, 95% confidence interval and statistical signifi-
cance to the Cox model.

Obtain predicted values of the survival and hazard functions and plot these functions
by calendar period of diagnosis

. predict slph, survival
. predict hiph, hazard per(1000)
. twoway (line slph _t if year8594 == 0, sort) ///
(line siph _t if year8594 == 1, sort) ///
, legend(order(1 "1975-1984" 2 "1985-1994") ring(0) pos(1l) col(1)) ///
xtitle("Time since diagnosis (years)") ///
ytitle("Survival")

. twoway (line hilph _t if year8594 == 0, sort) ///
(l1ine hilph _t if year8594 == 1, sort) ///
, legend(order(1 "1975-1984" 2 "1985-1994") ring(0) pos(1l) col(1)) ///
xtitle("Time since diagnosis (years)") ///
ytitle("Cause specific mortality rate (per 1000 py’s)")

Add the option yscale(log) to the hazard plot to display the hazard function on the
log scale. Why is the difference between the two lines constant over the time scale?

Note that there are 4 _rcs terms because of the df (4) option. We can investigate
more or less degrees of freedom for the baseline. It is easiest to do this in a loop. We
will also store the model estimates using estimates store and predict the baseline
survival and hazard functions.

forvalues i = 1/6 {
stpm2 year8594, scale(hazard) df(‘i’) eform
estimates store df ‘i’
predict h_df‘i’, hazard per(1000) zeros
predict s_df‘i’, survival zeros

}
Compare the hazard ratios, AIC and BIC from the different models.

. estimates table df*, eq(l) keep(year8594) se stats(AIC BIC)

According to the AIC and BIC how many degrees of freedom should be used for the
baseline? Does it matter for the interpretation of the estimated hazard ratio?

About AIC and BIC AIC (Akaike information criterion) and BIC (Bayesian infor-
mation criterion) are two popular measures for comparing the relative goodness-of-fit
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of statistical models. The AIC and BIC are defined as:

AIC = —21n(likelihood) + 2k

BIC = —2In(likelihood) 4 In(N)k

where k£ = number of parameters estimated and N = number of observations.

Given a set of candidate models for the data, the preferred model is the one with
the minimum AIC/BIC value. Hence, the measures not only reward goodness of fit,
but also include a penalty that is an increasing function of the number of estimated
parameters. AIC uses a fixed constant, 2, in the penalty term whereas the penalty in
BIC is a function of the number of observations. It is not always obvious how ‘number
of observations’ should be defined for time-to-event data, particularly for grouped or
split data. Volinsky and Raftery (2000) suggest using the number of events for N in
the BIC penalty term for survival models. The estimates stats command contains
an option n(#) for specifying N. In this exercise, the estimates table command will
give the BIC based on number of events as preferred.

In many circumstances both the AIC and BIC will suggest the same model. For
population-based survival data, the number of observations is large so BIC will pe-
nalize models with additional parameters more strongly than AIC.

Compare the estimated baseline survival and hazard functions for the models with
varying degrees of freedom.

. line s_df* _t, sort ///
legend (ring(0) cols(1) pos(1)) ///
xtitle("Time since diagnosis (years)") ///
ytitle("Survival") ///
name (compsurv, replace)

. line h_df* _t, sort ///
xtitle("Time since diagnosis (years)") ///
ytitle("Cause specific mortality rate (per 1000 py’s)") ///
name (comphazard, replace)

Comment on the agreement between the different choices of degrees of freedom.

The previous question compares using a different number of knots placed at their
default locations. However, it is also reasonable to ask whether placing the knots in
different places leads to different model fits. Run the code in the solution Do file to
fit 10 different models with 5df (6 knots) with the 4 internal knots placed at random
centiles of the distribution of event times. Don’t worry about understanding the code
(unless you want to).

Comment on the agreement in the hazard ratios, and the baseline survival and hazard
functions between the different models.

Now include sex and age (in categories) in the model. First fit a Cox model and
compare the parameter estimates

. stcox female year8594 i.agegrp
. estimate store cox
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EXERCISES

. stpm2 female year8594 i.agegrp, df(4) scale(hazard) eform
. estimates store stpm2_ph

Explain why the estimates from the Cox model and the flexible parametric model are
so similar.

As models become more complex, we may want predictions for specific combina-
tions of covariates. This is particularly the case when be have continuous covariates.
stpm2’s predict command has useful at() and zeros options. The at() option
requests predictions at specified values of covariates and the zeros options requests
that any variables not listed in the at () option are set to zero.

Another useful option is the timevar ({\it varname}) option. This requests that
the predictions are at values of time specified in varname rather than the default \_t.
This is useful for very large data sets or when wanting to predict survival for various
combinations of covariates at one specific time, e.g., 5 years.

i. Define a new variable, temptime with 200 observations taking values of time
between 0 and 10 and predict the baseline survival function.
. estimates restore ph
. range temptime 0 10 200
. predict S0, survival zeros timevar(temptime)
. line SO temptime, sort

What combination of covariates does the baseline survival represent?

ii. Using the at() and zeros options predict the hazard function for females aged
75+ diagnosed in 1985-1994 for values of temptime with a 95% confidence inter-
val.

. predict S_F_8594_age75, survival ///
at(female 1 year8594 1 agegrp 3) timevar(temptime) ci

. twoway (rarea S_F_8594_age75_lci S_F_8594_age75_uci temptime, pstyle(ci)) ///
(line S_F_8594_age75 temptime) ///
, legend(off) ///
xtitle("Time since diagnosis (years)") ///
ytitle("S(t)") ///
title("Female age 75+ diagnosed 1985-1994")
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132. Modelling time-dependent effects using flexible parametric models

Stata addon required! This exercise requires the Stata user-written command stpm2.

We will now fit a model where the effect of age group is time-dependent. Reload and
stset the data.

. use melanoma, clear

. keep if stage ==

. gen female = sex ==

. stset surv_mm, failure(status==1) exit(time 60.5) scale(12)

We have restricted follow-up to five years.

(a)

First we will fit a Cox model and assess the proportional hazards assumption using
Schoenfeld residuals. One can obtain a plot of the scaled Schoenfeld residuals, with
a smoother, for a chosen predictor using the following command.

. estat phtest, plot(3.agegrp)

We will use a loop to produce plots for each agegrp and add a horizontal line at the
value of the estimated log hazard ratio.

. stcox female year8594 i.agegrp,
. forvalue i = 1/3 {
local beta = _b[‘i’.agegrp]
estat phtest, plot(‘i’.agegrp) name(sch_age‘i’, replace) ///
yline(0 ‘beta’) msize(small) msymbol(Oh) bw(0.4)
}
. estat phtest, detail

Is the effect of age proportional?

Now fit a flexible parametric proportional hazards model with 4 df for the baseline.
Note that when we go on to use the tvc () option you can’t use Stata’s factor variables,
so we create dummy variables for age group.

. tab agegrp, gen(agegrp)
. stpm2 female year8594 agegrp2-agegrp4, df(4) scale(hazard) eform
. estimates store ph

Predict and plot the hazard function for each age group for males diagnosed in 1975-
1984. Note the use of the at () and zeros options.

. predict h_agel, hazard zeros per(1000)

. predict h_age2, hazard at(agegrp2 1) zeros per(1000)
. predict h_age3, hazard at(agegrp3 1) zeros per(1000)
. predict h_age4, hazard at(agegrp4 1) zeros per(1000)

. twoway (line h_agel _t, sort) ///
(line h_age2 _t, sort) ///
(line h_age3 _t, sort) ///
(line h_age4 _t, sort) ///
,xtitle("Time since diagnosis (years)") ///
ytitle("Cause specific mortality rate (per 1000 py’s)") ///
legend(order(1l "<45" 2 "45-59" 3 "60-74" 4 "75+") ring(0) pos(1) cols(1))
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(¢) Now fit a model with time-dependent effects for age group. We will do this using 2
degrees of freedom for each age category.

. stpm2 female year8594 agegrp2-agegrp4, df (4) scale(hazard) ///
tvc(agegrp2 agegrp3 agegrp4) dftvc(2)
. estimates store nonph

Perform a likelihood ratio test comparing the proportional hazards model with the
non-proportional hazards (for age) model. Is there evidence of a non-proportional
effect?

. lrtest ph nonph

(d) Now predict the hazard function for each age group. Note that the prediction com-
mand is identical to that used in the proportional hazards model as stpm2 knows
which variables have time-dependent effects and takes this into account when pre-
dicting.

. predict h_agel_tvc, hazard zeros per(1000)

. predict h_age2_tvc, hazard at(agegrp2 1) zeros per(1000)
. predict h_age3_tvc, hazard at(agegrp3 1) zeros per(1000)
. predict h_aged4_tvc, hazard at(agegrp4 1) zeros per(1000)

. twoway (line h_agel h_agel_tvc _t, sort lcolor(red red) lpattern(solid dash)) ///
(line h_age2 h_age2_tvc _t, sort lcolor(blue blue) lpattern(solid dash)) ///
(line h_age3 h_age3_tvc _t, sort lcolor(magenta magenta) lpattern(solid dash)) ///
(line h_age4 h_age4_tvc _t, sort lcolor(green green) lpattern(solid dash)) ///
,xtitle("Time since diagnosis (years)") ///
ytitle("Cause specific mortality rate (per 1000 py’s)") ///
legend(order(1l "<45" 2 "45-59" 3 "60-74" 4 "75+") ring(0) pos(1) cols(1)) ///
name (hazard_tvc, replace)

(e) Obtain a prediction of the hazard ratio as a function of time for each age group.

. predict hr2, hrnumerator(agegrp2 1) ci
. predict hr3, hrnumerator(agegrp3 1) ci
. predict hr4, hrnumerator(agegrp4 1) ci

Note that by default the hrdenominator option sets all covariates to zero. As we
only have one covariate with a time-dependent effect we can leave this unspecified.

Plot these hazard ratios versus follow-up time on the same graph. What happens to
the hazard ratios as follow-up time increases? Also plot the hazard ratio for the oldest
group with a 95% confidence interval. Explain why the hazard ratio for the oldest
age group is so high early on in the time-scale (hint: look at the baseline hazard)

. twoway (line hr2 hr3 hr4 _t, sort), ///
yscale(log) ylabel(l 2 10 20 50) ///
legend(order(1l "Age 45-59" 2 "Age 60-74" 3 "Age 75+") ring(0) pos(1l) cols(1)) ///
xtitle("Time since diagnosis (years)") ///
ytitle("Hazard ratio") ///
name (hr, replace)

. twoway (rarea hr4_lci hr4_uci _t, sort pstyle(ci)) ///
(1ine hr4 _t, sort) ///
,legend(off) yscale(log) ylabel(l 2 10 20 50) ///
xtitle("Time since diagnosis (years)") ///
ytitle("Hazard ratio") ///
name ("hr_aged", replace)
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(f) Obtain and plot with 95% confidence intervals the difference in the hazard rates
between the oldest and youngest age groups for males in 1975-1984.

. predict hdiff4, hdiffl(agegrp4 1) ci per(1000)

. twoway (rarea hdiff4_lci hdiff4_uci _t, sort) ///
(line hdiff4 _t, sort) ///
,legend(off) ///
xtitle("Time since diagnosis (years)") ///
ytitle("Difference in hazard rate") ///
name (hdiff, replace)

Explain why the hazard difference is small early on in the time-scale, when the hazard
ratio is at is greatest.

(g) Predict and plot the survival function for the youngest and oldest age groups for
females diagnosed in 1985-1994.

. predict sl, surv at(female 1 year8594 1) zeros
. predict s2, surv at(agegrp4 1 female 1 year8594 1) zeros

Obtain and plot with 95% confidence intervals the difference in the survival functions
between the oldest and youngest age groups for females diagnosed in 1985-1994.

. predict sdiff4, sdiffil(agegrp4 1 female 1 year8594 1) ///
sdiff2(agegrp4 O female 1 year8594 1) ci
. twoway (rarea sdiff4_lci sdiff4_uci _t, sort) ///
(line sdiff4 _t, sort) ///
,legend(off) ///
xtitle("Time since diagnosis (years)") ///
ytitle("Difference in survival functions") ///
name (sdiff, replace)

(h) Fit models with 1, 2 and 3 df for the time-dependent effect of age. Use the AIC
and BIC to compare models. Compare the estimated time-dependent hazard ratio
for the oldest age group compared to the youngest (also compare the 95% confidence
intervals). You may want to exclude the first month from you plot as the hazard
ratio is very high close to zero.

forvalues i = 1/3 {
stpm2 i.sex year8594 agegrp2-agegrp4, df(4) scale(hazard) ///
tvc(agegrp2 agegrp3 agegrp4) dftvc(‘i’)
estimates store dftvc‘i’
predict hr4_df‘i’, hrnumerator(agegrp4 1) ci
}
count if _d==
estimates stats dftvc*, n(‘r(N)’)

twoway (line hr4_dfl hr4_dfl_lci hr4_dfl_uci _t, sort lcolor(red..) ///

lpattern(solid dash dash) lwidth(medthick thin thin)) ///

(line hr4_df2 hr4_df2_1lci hr4_df2_uci _t, sort lcolor(midblue..) ///

lpattern(solid dash dash) lwidth(medthick thin thin)) ///

(line hr4_df3 hr4_df3_lci hr4_df3_uci _t, sort lcolor(midgreen..) ///
lpattern(solid dash dash) lwidth(medthick thin thin)) ///

if _t>0.1, ///

yscale(log) ///

ylabel(1 2 4 8 20 50, angle(h)) ///
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legend(order(1 "1 df" 4 "2 4f" 7 "3 df") ring(0) pos(1) cols(1)) ///
xtitle("Time since diagnosis (years)") ///

ytitle("Hazard Ratio") ///

yscale(log) ///

name (tvc_df_comp, replace)

We will now also let the effect of sex be time-dependent to illustrate when there
are two time-dependent effects the hazard ratios are not the exactly the same. Add
female to the tvc option.

. stpm2 female agegrp2-agegrp4, df(4) scale(hazard) ///
tvc(agegrp2 agegrp3 agegrp4 female) dftvc(3)

Use the hrnumerator and hrdenominator options of the predict command to obtain
a prediction of the hazard ratio for female for the youngest and the oldest age groups.
Add the ci option to obtain confidence intervals. Compare the resulting curves and
their 95% confidence intervals to show that the curves are similar, but not identical.

. predict hr_f_agel, hrnum(female 1) ci
. predict hr_f_age4, hrnum(female 1 agegrp4 1) hrdenom(agegrp4 1) ci

. twoway (line hr_f_agelx hr_f_aged4* _t if _t>0.1, sort yscale(log))

additional topic - not covered in lectures If we were modelling on the log hazard
scale, then including exactly the same covariates and time-dependent effect, the haz-
ard ratio would be equivalent. Such a model can be fitted using the strcs command.
This command is much slower than stpm2 as it requires numerical integration (using
Gauss-Legendre quadrature) to estimate the parameters.

. strcs female agegrp2-agegrp4, df(4) ///
tvc(agegrp2 agegrp3 agegrp4 female) dftvc(3) nodes(50)
. predict hr_f_agelb, hrnum(female 1) ci
. predict hr_f_agedb, hrnum(female 1 agegrp4 1) hrdenom(agegrp4 1) ci

. twoway (line hr_f_agelb* hr_f_age4b* _t if _t>0.1, sort yscale(log))
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140. Probability of death in a competing risks framework (cause-specific survival)

Stata addon required! This exercise requires the Stata user-written command
stcompet. See Section (page {4) for details and installation instructions.

This question gives an introduction to some of the methods available for competing risks
analyses. To carry out the exercises you will need to install some user-written commands
from within Stata. The stcompet command estimates the cumulative incidence func-
tion (CIF) non-parametrically. The stpm2cif command estimates the CIF through post-
estimation after fitting a flexible parametric model.

(a)

Load the colon data dropping those with missing stage.

use colon, clear
drop if stage ==
gen female = sex==2

If you summarize status you will notice that there are deaths from both cancer and
other causes. Plot the complement of the Kaplan-Meier estimate for males (i.e., 1
minus Kaplan-Meier survival estimate) for both cancer and other causes. Describe
what you see.

A common confusion when competing risks are present is to think that the probability
of death from cancer can be obtained by taking the complement of the Kaplan-Meier
estimate (1-KM). By doing this we treat deaths from other causes as censored. If we
can assume independence, that is the patients dying from other causes would have
been at no systematically higher or lower risk of dying from cancer, then we estimate
the marginal probability of death, i.e., the probability of death in the hypothetical
world where it is not possible to die of other causes.

The appropriate estimate for the “real world” probability of death from cancer when
competing risks are present is the cumulative incidence function. That is the propor-
tion of patients that have died from cancer at a certain time in the follow-up period
taking into account competing causes of death.

Use the stcompet command to estimate the cumulative incidence function for both
cancer and other causes. Plot the cumulative incidence functions for males along with
the complements of the Kaplan-Meier estimates from part (a). What do you notice?

stset surv_mm, failure(status==1) scale(12) exit(time 120.5)
stcompet CIF_sex=ci, competl(2) by(sex)
gen CIF_sex_cancer=CIF_sex if status==
gen CIF_sex_other=CIF_sex if status==2
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(¢) Obtain estimates of the CIF for cancer and other causes by age group. Plot and
interpret the curves.

stset surv_mm, failure(status==1) scale(12) exit(time 120.5)
stcompet CIF_age=ci, competl(2) by(agegrp)

twoway (line CIF_age _t if agegrp == O & status == 1, sort connect(stepstair)) ///
(line CIF_age _t if agegrp == 1 & status == 1, sort connect(stepstair)) ///
(line CIF_age _t if agegrp == 2 & status == sort connect(stepstair)) ///
(line CIF_age _t if agegrp == 3 & status == sort connect(stepstair)) ///
, legend(order(l "<45" 2 "45-59" 3 "60-74" 4 "75+") ring(0) pos(5) cols(1l)) ///
xtitle("Years since diagnosis") ///
ytitle("CIF") ///
title("Cancer") ///
name (CIF_agel,replace)

1,
1,

twoway (line CIF_age _t if agegrp == O & status == 2, sort connect(stepstair)) ///
(line CIF_age _t if agegrp == 1 & status == 2, sort connect(stepstair)) ///
(line CIF_age _t if agegrp == 2 & status == 2, sort connect(stepstair)) ///
(line CIF_age _t if agegrp == 3 & status == 2, sort connect(stepstair)) ///
, legend(order(1l "<45" 2 "45-59" 3 "60-74" 4 "75+") ring(0) pos(11l) cols(1)) ///
xtitle("Years since diagnosis") ///
ytitle("CIF") ///
title("Other causes") ///
name (CIF_age2,replace)

graph combine CIF_agel CIF_age2, nocopies ycommon

(d) Now obtain the CIF for cancer and other causes by stage group. Plot the results.
Explain why those diagnosed with regional and distant stage are less likely to die
from other causes when compared to those with localized disease.

. stcompet CIF_stage=ci, competl(2) by(stage)

. twoway (line CIF_stage _t if stage == 1 & status == 1, sort connect(stepstair)) ///
(line CIF_stage _t if stage == 2 & status == 1, sort connect(stepstair)) ///
(line CIF_stage _t if stage == 3 & status == 1, sort connect(stepstair)) ///

, legend(order(1 "local" 2 "regional" 3 "distant") ring(0) pos(5) cols(1)) ///
xtitle("Years since diagnosis") ///

ytitle("CIF") ///

title("Cancer") ///

name (CIF_stagel,replace)

. twoway (line CIF_stage _t if stage == 1 & status == 2, sort connect(stepstair)) ///
(line CIF_stage _t if stage == 2 & status == 2, sort connect(stepstair)) ///
(line CIF_stage _t if stage == 3 & status == 2, sort connect(stepstair)) ///

, legend(order(l "local" 2 "regional" 3 "distant") ring(0) pos(1l) cols(1)) ///
xtitle("Years since diagnosis") ///

ytitle("CIF") ///

title("Other causes") ///

name (CIF_stage2,replace)

. graph combine CIF_stagel CIF_stage2, nocopies ycommon
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180. Outcome-selective sampling designs (nested case-control and case-cohort)

In this exercise we compare a full cohort analysis of the melanoma data to analyses using
nested case-control (NCC) and case-cohort designs. For the purpose of the exercise, we
will assume that the main exposure of interest is sex and we will adjust for age at diagnosis
(agegrp), year of diagnosis (year8594) and stage.

We would not use outcome-selective sampling in practice for this research question, but
do it here for pedagogic purposes. In practice, we might use such designs if we were
interested in collecting additional information on an expensive or time-consuming exposure
or confounder/effect modifier (e.g., biomarker information or collecting information from
medical records), which may not be feasible on the full cohort of 7,775 patients.

(a)

We start by performing a full cohort analysis on all 7,775 patients. We stset using
death due to melanoma as the outcome and time-since-diagnosis as the timescale.

. use melanoma, clear
. stset exit, fail(status==1) enter(dx) origin(dx) scale(365.24) id(id)

How many deaths are there among the patients? These deaths will be the ‘cases’ in
the NCC and the case-cohort designs.

Is there evidence of a difference in mortality between women and men? Estimate
Kaplan-Meier curves and fit a Cox regression model with sex as the main exposure.
Also adjust the model for age, year and stage. Is there evidence of confounding by
age, year and stage?

. * Kaplan-Meier curves
. sts graph, by(sex)

. * Cox regression
. stcox i.sex
. stcox 1i.sex i.agegrp i.year8594 i.stage

Now fit the same model, but as a flexible parametric model and as a Poisson regression
model. To adjust for time-since-cancer as the underlying timescale in the Poisson
regression model, we must time-split the data on follow-up (fuband) and add time-
since-cancer in the model as a covariate (fuband). This step is not needed for the
flexible parametric model, which automatically uses the timescale specified in stset.

* Flexible parametric model
. Sstpm2 i.sex i.agegrp i.year8594 i.stage, df(5) scale(hazard) eform

* Poisson regression
. stsplit fuband, at(0(5)20)
. streg i.sex i.agegrp i.year8594 i.stage i.fuband, dist(exp)

Compare the estimates of the sex effect for Cox regression, FPM and Poisson regres-
sion. Are they different? Would you expect them to differ? Why (or why not)?
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EXERCISES

You may wish to make use of Stata’s estimate machinery for storing, manipulating,
and displaying estimation results.

use melanoma, clear
stset exit, fail(status==1) enter(dx) origin(dx) scale(365.24) id(id)

stcox i.sex i.agegrp i.year8594 i.stage, nolog
estimates store cox

stpm2 i.sex i.agegrp i.year8594 i.stage, df(5) scale(hazard) eform nolog
estimates store fpm

stsplit fuband, at(0(5)20)
Sstreg i.sex i.agegrp i.year8594 i.stage i.fuband, dist(exp) nolog
estimates store poiss

estimates table cox fpm poiss, eq(1l) b(%5.3f) eform

We will now generate and analyse a nested case-control study with 1 control per case.
First reload and stset the data using melanoma-specific death as the outcome and
time-since-diagnosis as the timescale.

. use melanoma, clear
. stset exit, fail(status==1) enter(dx) origin(dx) scale(365.24) id(id)

How many events (deaths due to melanoma) were observed during follow-up. If we
generated a nested case-control study with 1 control per case, how many unique
individuals do you expect would be in the NCC?

Let’s now generate the NCC using the sttocc command. We will match on age group
and select 1 control per case.

. set seed 339487731
. sttocc, match(agegrp) n(1)

The sampling will take a few minutes. For each riskset a dot will appear in the results
window. Since there are 1913 deaths, there will be 1913 dots. We have chosen to
specify a seed for the Stata random number functions in order to make the sampling
reproducible (i.e., force everyone to get the same results).

The data set in memory will now be the nested case-control dataset. Use the describe
command to examine its contents and list the first 10 observations.
The variable _case include the case-control status (1=case, O=control), _set is a
unique identifier for the matched set (i.e., the case and its matched control will have
the same value on the _set variable).

i. What information is represented by the variable _time?

ii. Confirm that there are an equal number of cases and controls and that the age
distribution of the cases and controls is the same (due to matching on age).

iii. How many unique individuals are there in the nested case-control study?
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(f) Nested case-control studies are analysed using conditional logistic regression. We
must condition on the matching strata (by including the _set variable in the group ()
option).

. clogit _case i.sex i.year8594 i.stage, group(_set) or

i. What underlying quantity is being estimated by the estimates in the column
labelled ‘Odds ratio’?

ii. Is the estimated effect measure for sex similar to the hazard ratio for the full
cohort? Would you expect it to be?

iii. Are the confidence intervals (standard errors) similar?

(g) We will now generate and analyse a case-cohort study. Reload and stset the data
using cause-specific death as the outcome and time-since-diagnosis as the timescale

. use melanoma, clear
. stset exit, fail(status==1) enter(dx) origin(dx) scale(365.24) id(id)

Now we will generate a case-cohort design with a sampling fraction of around 25%.
We will generate a new outcome variable based on the event indicator variable (_d)
from the stset.

. gen case=_d

First, we must sample the subcohort. To make sure the sampling is reproducible, we
use a seed. Then we assign a random number between 0 and 1 to all observations
in the dataset (using the runiform command). We select a subcohort by creating
an indicator variable subcoh which takes the value 1 for 25% observations in the
subcohort and value 0 for the remaining 75% observations outside the subcohort.

. set seed 339487731 // makes sampling reproducible

. gen u = runiform() // assign random number to all obs

. gen subcoh = 1 if (u <= 0.25) // generate dummy subcohort
. replace subcoh = 0 if (u > 0.25)

Check that the sampling worked by tabulating the number of cases and non-cases
inside and outside the subcohort? Complete the following table.

. tab case subcoh

Outside subcohort | Inside subcohort Total
Non-cases
Cases
Total 7,775

(h) Calculate the exact sampling fraction of the subcohort. Also calculate the exact sam-
pling fraction of non-cases, i.e. the proportion of non-cases in the subcohort compared
to non-cases in the full cohort.



48

(i)

EXERCISES

The analysis of case-cohort samples is identical to that of cohort designs with the
addition of (1) weights and (2) robust standard errors. Generate the weights by
creating a wt variable, which takes the value 1 for cases and ‘the inverse of the
sampling fraction for non-cases’ for non-cases.

. gen wt = 1 if case==
. replace wt = 1 / (1470/5862) if case==0 & subcoh==
. tab wt, missing

Are the weights as you expected? Which observations have missing values for wt?

To include weights in the analysis in Stata, simply include them in the stset com-
mand using the pweight option [pw=wt]. The weights will now be included in all st
commands. Any observation with missing values for wt will not be included in the
analysis.

. stset exit [pw=wt], fail(status==1) enter(dx) origin(dx) ///
scale(365.24) id(id)

Estimate the effect of sex on mortality by fitting the models using the weighted data,
i.e. Cox regression, FPM and Poisson regression. Compare the estimates of the sex
effect. What do you conclude?

. * Cox model for case-cohort - Borgan II weights
. stcox i.sex i.agegrp i.year8594 i.stage, vce(robust)

. * FPM model for case-cohort - Borgan II weights
. Stpm2 i.sex i.agegrp i.year8594 i.stage, scale(h) df(5) eform ///
vce(robust) nolog

. * Poisson regression - Borgan II weights
. stsplit fuband, at(0(5)20)
. Streg i.sex i.agegrp i.year8594 i.stage i.fuband, dist(exp) vce(robust)

Investigate the extent of sampling variation by generating multiple nested case-control
studies. The following code generates, analyses, and reports a table of results for 5
repetitions. Note that this code will take sevarl minutes to run.

set more off
use melanoma, clear
stset exit, fail(status==1) enter(dx) origin(dx) scale(365.24) id(id)

forvalues i=1/5 {

preserve

display as text _newline "Now processing iteration " ‘i’ _newline
sttocc, match(agegrp) n(1)

clogit _case i.sex i.year8594 i.agegrp i.stage, group(_set) or nolog
estimates store ncc‘i’

restore

3

est table nccl ncc2 ncc3 ncc4d ncch, eform equations(1l) ///
b(%9.6f) se modelwidth(10)

Now see what happens if you increase the number of controls to, for example, 3 and
then 5. What would you expect with 5 controls per case?
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Investigate generate and analyse multiple case-cohort studies. The following code
generates, analyses, and reports a table of results for 5 repetitions with a subcohort
of 25%.

set more off
use melanoma, clear

gen case=(status==1)

forvalues i=1/5 {

preserve

display as text _newline "Now processing iteration
gen subcoh = (runiform() <= 0.25)

gen wt = 1 if case==

replace wt = 1 / 0.25 if case==0 & subcoh==1

stset exit [pw=wt], fail(status==1) enter(dx) origin(dx) scale(365.24) id(id)
stcox i.sex i.agegrp i.year8594 i.stage, vce(robust)

estimates store cc‘i’

" ‘i’ _newline

restore

}

est table full_cox ccl cc2 cc3 cc4d cchb, eform equations(1l) ///
b(%9.6f) se modelwidth(10)

Now investigate the effect of changing the size of the subcohort to, for example, 10%
and 50%.
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