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Extra lecture on modelling

• This lecture covers general theory of modelling and effect parameterisation
(not specific to survival analysis).

• Binary, categorical and continuous effects

• The main effects model

• Interaction models

• Parameterisation of effects to obtain the effect (group comparison) of interest

• As an illustrative example, we will use the diet data and use Poisson
regression to model the rate, assuming constant (average) rates over time. So
we will ignore time for now.
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Binary and categorical exposure variables

• The energy intake variable hieng has two levels.

• The variable eng3, created below, has 3 levels. Here are the crude rates and
IRRs.

. egen eng3=cut(energy),at(1500,2500,3000,4500)

energy eng3 Rate

-------------------------------

1500-2499 1500 | 16.90

2500-2999 2500 | 10.91 IRR (2500 vs 1500) = 10.91/16.90 = 0.65

3000-4500 3000 | 4.88 IRR (3000 vs 1500) = 4.88/16.90 = 0.29

-------------------------------
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• To include eng3 in regression commands we need to use indicator variables
for the 3 levels.

eng3 X1 X2 X3

1500 1 0 0
2500 0 1 0
3000 0 0 1

• We create dummy variables X1, X2, X3 for exposure eng3.

. tabulate eng3, generate(X)

• We set exposure level 1500 as reference by omitting X1 from the model.
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. poisson chd X2 X3, e(y) irr

chd | IRR [95% Conf. Interval]

------+------------------------------

X2 | .6452 .3388815 1.228561

X3 | .2886 .1235342 .6744495

_cons | .0169 .0103547 .0275892

• The variable (X1) that indicates the category with the lowest energy intake
(1500) is omitted, meaning this is the reference category.
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• In terms of the parameters

ln(λ) = β0 + β2X2 + β3X3

energy X ln(rate) rate

1500 X1 β0 exp(β0)
2500 X2 β0 + β2 exp(β0 + β2) = exp(β0) exp(β2)
3000 X3 β0 + β3 exp(β0 + β3) = exp(β0) exp(β3)

IRRX2/X1
= exp(β2) =

exp(β0) exp(β2)

exp(β0)

IRRX3/X1
= exp(β3) =

exp(β0) exp(β3)

exp(β0)
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Automatic generation of indicators using factor variables

. poisson chd i.eng3, e(y) irr

-------------------------------------------

chd | IRR [95% Conf. Interval]

--------+----------------------------------

eng3 |

2500 | .6452416 .3388815 1.228561

3000 | .2886479 .1235342 .6744495

• i. tells Stata that eng3 should be treated as a categorical variable

• The baseline is, by default, the first level (1500-2499), but this can be
changed to (say) the third level (3000–4500) with

. poisson chd ib3000.eng3, e(y) irr
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Metric (continuous) exposure variables

• The effect of energy on the CHD rate, when energy is measured as a
continuous variable

. poisson chd energy , e(y) irr

-----------------------------------------

chd | IRR [95% Conf. Interval]

-------+---------------------------------

energy | .99885 .9981367 .9995637

• For each 1 unit increase in energy intake, the CHD rate is reduced by 0.1%.
The units of energy are kcals per day.
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• However, a 1 unit increase may not be clinically relevant. We may want to
rescale the continuous variable.

. summarize energy

Variable | Obs Mean Std. Dev. Min Max

---------+--------------------------------------------

energy | 337 2828.9 441.8 1748.4 4395.8

• To get the IRR for an increase of, say, 100 units

. gen energy100=energy/100

. poisson chd energy100, e(y) irr

--------------------------------------------

chd | IRR [95% Conf. Interval]

----------+---------------------------------

energy100 | .8913034 .8298593 .9572968

• The estimated IRR is 0.99885100 = 0.8913. That is, for each 100 unit
increase in energy intake, we estimate that the CHD rate is reduced by 11%.
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The main effects model — constant effect over strata

• If the true effect of exposure does not vary across strata of another variable
we can use a main effects model.

• For example, if the effect of high energy intake is the same in all occupations,
we can estimate an energy effect that is the same for all occupations.

• Thus, if the estimates of high energy differ only randomly over occupation
level, we can consider a model in which the true effect of high energy is
constant over occupation level, i.e. no interaction.

• This allows us to combine the information from different strata to yield a
single estimate of exposure effect.

• This combined estimate of the effect we call the main effect, which is then
controlled for the stratifying (confounding) variable(s).
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• The effect of exposure is assumed to be the same in all levels of other
variables in a main effects model.

• Statistical tests for the presence of confounding are not available, although
there are statistical tests for effect modification.
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Main effects model using Poisson regression

. poisson chd i.hieng i.job, e(y) irr

-------------------------------------------------

chd | IRR [95% Conf. Interval]

-------------+-----------------------------------

1.hieng | .5247666 .290225 .9488499

|

job |

2 | 1.358442 .6282879 2.937133

3 | .8843023 .4322823 1.808981

|

_cons | .0132337 .0071823 .0243837

• Occupation is measured in job variable (1=driver, 2=conductor, 3=banker).

• The Stata Poisson regression command makes no distinction between the
exposure variable and the confounding variable.
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• The first number reported is the effect of hieng adjusted for job, and the
next two are the effects of job adjusted for hieng.
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Models and parameters in Poisson regression

• In the Poisson regression model we estimated 4 parameters. One parameter
(the intercept) is a log rate and the other three are log incidence rate ratios.

• The model is ln(λ) = β0 + β1hieng + β2cond + β3bank

• The parameters are

exp(β0) = rate at reference level of all covariates, i.e. driver with low energy

exp(β1) = rate ratio (comparing high vs low energy)

exp(β2) = rate ratio (comparing conductors vs drivers)

exp(β3) = rate ratio (comparing bank vs drivers)
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Parameters estimates with and without the irr option

. poisson chd i.hieng i.job, e(y)

chd | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.hieng | -.6448017 .3021979 -2.13 0.033 -1.237099 -.0525046

job |

2 | .3063385 .3934232 0.78 0.436 -.4647568 1.077434

3 | -.1229563 .36517 -0.34 0.736 -.8386764 .5927639

_cons | -4.324988 .3118157 -13.87 0.000 -4.936136 -3.713841

. poisson chd i.hieng i.job, e(y) irr

chd | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.hieng | .5247666 .1585834 -2.13 0.033 .290225 .9488499

job |

2 | 1.358442 .5344426 0.78 0.436 .6282879 2.937133

3 | .8843023 .3229207 -0.34 0.736 .4322823 1.808981

_cons | .0132337 .0041265 -13.87 0.000 .0071823 .0243837

• The irr option exponentiates the coefficients.
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• From the model, the estimated rate for each combination of explanatory
variables can be formulated as a function of the baseline rate λ and the three
incidence rate ratios. The baseline is the reference group of all variables
(drivers with low energy).

• The model is ln(λ) = β0 + β1hieng + β2cond + β3bank

• Which on the rate scale is λ = exp(β0 + β1hieng + β2cond + β3bank)

• These are the rates, λ:

job hieng=0 hieng=1
1=driv exp(β0) exp(β0 + β1)

2=cond exp(β0 + β2) exp(β0 + β1 + β2)

3=bank exp(β0 + β3) exp(β0 + β1 + β3)
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• The estimated incidence rate for drivers with a low energy intake (ref group)
is exp(−4.325) = 0.0132 events/person-year.

• The estimated incidence rate for conductors with a high energy intake is
exp(β0 + β1 + β2) = exp(β0)× exp(β1)× exp(β2) =
0.0132× 1.358× 0.525 = 0.0094 events/person-year.
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• To get the IRRs (with reference group ‘drivers with low energy intake’) we
simply divide all cells with the baseline rate λ = exp(β0)

job hieng=0 hieng=1

1=driv exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

2=cond exp(β0 + β2)/ exp(β0) = exp(β2) exp(β0 + β1 + β2)/ exp(β0) = exp(β1 + β2)

3=bank exp(β0 + β3)/ exp(β0) = exp(β3) exp(β0 + β1 + β3)/ exp(β0) = exp(β1 + β3)
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• If we put the estimates from the Stata output into our table of parameters,
we get the IRRs

job hieng=0 hieng=1
driv 1.0 0.52

cond 1.36 0.52× 1.36 = 0.71

bank 0.88 0.52× 0.88 = 0.46

• Compared to drivers with low energy intake, the conductors with high energy
have a 29% lower incidence of CHD (IRR=0.71).

• Effect of being high vs low energy is 0.52 (48% lower).

• Effect of being conductor vs driver is 1.36 (36% higher).

• Effect of being banker vs driver is 0.88 (12% lower).
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exp(β0+β2)

exp(β0)

exp(β0+β3)

exp(β0+β1+β2)

exp(β0+β1)

exp(β0+β1+β3)

exp(β2)         1.36

1.0 (ref)

exp(β3) 0.88

exp(β1+β2) 0.52 x 1.36=0.71

exp(β1) 0.52

exp(β1+β3) 0.52 x 0.88=0.46

0.0132 

0.0132 x 1.36 

0.0132 x 0.88 

0.0132 x 0.52 x 1.36 

0.0132 x 0.52

0.0132 x 0.52 x 0.88 
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• If we want to get the effect of energy separately in all levels of occupation, we
simply change the reference rate to be low energy in all levels.

job hieng=0 hieng=1

1=driv exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

2=cond exp(β0 + β2)/ exp(β0 + β2) = 1 exp(β0 + β1 + β2)/ exp(β0 + β2) = exp(β1)

3=bank exp(β0 + β3)/ exp(β0 + β3) = 1 exp(β0 + β1 + β3)/ exp(β0 + β3) = exp(β1)

• We see that the main effect models give the same effect of energy, exp(β1),
regardless of job level.

job hieng=0 hieng=1
1=driv 1.0 exp(β1)

2=cond 1.0 exp(β1)

3=bank 1.0 exp(β1)
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• This is what a main effect model assumes, i.e. the effect of exposure is the
same in all levels of another variable.
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• Similarly, if we want to get the effect of job in all levels of energy intake, we
change the reference rate to the driver in both levels of energy intake.

job hieng=0 hieng=1

1=driv exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0 + β1) = 1

2=cond exp(β0 + β2)/ exp(β0) = exp(β2) exp(β0 + β1 + β2)/ exp(β0 + β1) = exp(β2)

3=bank exp(β0 + β3)/ exp(β0) = exp(β3) exp(β0 + β1 + β3)/ exp(β0 + β1) = exp(β3)

• Similarly, the main effects of job are the same, exp(β2) and exp(β3),
regardless of energy level.

job hieng=0 hieng=1
1=driv 1.0 1.0

2=cond exp(β2) exp(β2)

3=bank exp(β3) exp(β3)
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Effect modification

• If the true effect of exposure is not the same, but varies across strata of
another variable there is said to be ‘effect modification’ (interaction) — the
effect of exposure cannot then be represented by one IRR for all levels.

• For example, the effect of high energy may depend on occupation, so that
drivers have a greater effect of high energy than conductors.

• Then we say that the effect is modified by occupation. There is an interaction
between energy intake and occupation.

• Does job modify the effect of hieng? If we estimate the IRR of high vs low
energy separately in all three job groups we get
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Job Effect of hieng

driver 0.41

conductor 0.66

bank 0.52

• The numbers represent the incidence rate ratios (comparing high to low
energy intake) within each job category.

• If the effect of high energy is not modified by job then we would expect these
to be similar.

• In the previous main effect model, we assumed (and estimated) the effect to
be 0.52 in all job levels.
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Interaction model using Poisson regression

• If we want to estimate separate effects of hieng in job levels, then four
parameters are not enough.

• We have six combinations of energy and job level, hence we need six
parameters to estimate six different rates.

• This is easily done by including interaction terms in the Poisson model.

• The model is
ln(λ) = β0 + β1hieng + β2cond + β3bank + β4hieng x cond + β5hieng x bank
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• The parameters are

exp(β0) = rate at reference level of all covariates, i.e. driver with low energy

exp(β1) = rate ratio (comparing high vs low energy among drivers)

exp(β2) = rate ratio (comparing conductors vs drivers among low energy)

exp(β3) = rate ratio (comparing bank vs drivers among low energy)

exp(β4) = interaction term (excess rate for cond vs driv among high energy)

exp(β5) = interaction term (excess rate for bank vs driv among high energy)
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. poisson chd i.hieng##i.job, e(y) irr

chd | IRR [95% Conf Int]

-------------+------------------------

1.hieng | .4102648 .1235412 1.362438

|

job |

2 | 1.136857 .4266828 3.029051

3 | .813427 .3325064 1.989927

|

hieng#job |

1 2 | 1.596755 .3222813 7.911183

1 3 | 1.261973 .2824452 5.638532

|

_cons | .0144648 .0072338 .028924

• 0.41 is the effect of hieng when job is at its first level.

• 1.14 and 0.81 are the effects of job when hieng is at its first level.

• 1.60 and 1.26 are the interactions between hieng and job.
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• 0.014 is the baseline rate in the reference level of both hieng and job.
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Parameters for the interaction model

• The fitted rates (λ) from the interaction model can be expressed in terms of
the model parameters as follows

job hieng=0 hieng=1
1=driv exp(β0) exp(β0 + β1)

2=cond exp(β0 + β2) exp(β0 + β1 + β2 + β4)

3=bank exp(β0 + β3) exp(β0 + β1 + β3 + β5)

• exp(β4) and exp(β5) are the interaction parameters. They measure deviations
from the hypothesis of main effect of hieng in all job categories.

• The model is
ln(λ) = β0 + β1hieng + β2cond + β3bank + β4hieng x cond + β5hieng x bank
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• If we wish to tabulate the IRR, using the drivers with low energy intake as
reference group, then we simply divided all cells with the reference rate.

job hieng=0 hieng=1

1=driv exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

2=cond exp(β0 + β2)/ exp(β0) = exp(β2) exp(β0 + β1 + β2 + β4)/ exp(β0) = exp(β1 + β2 + β4)

3=bank exp(β0 + β3)/ exp(β0) = exp(β3) exp(β0 + β1 + β3 + β5)/ exp(β0) = exp(β1 + β3 + β5)
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• If we add the Stata output into the table of IRRs we get

job hieng=0 hieng=1
driv 1.0 0.41

cond 1.14 0.41× 1.14× 1.60 = 0.75

bank 0.81 0.41× 0.81× 1.26 = 0.42

• Compare to the estimates from main effects model

job hieng=0 hieng=1
driv 1.0 0.52

cond 1.36 0.52× 1.36 = 0.71

bank 0.88 0.52× 0.88 = 0.46

31



exp(β2)         1.36

1.0 (ref)

exp(β3) 0.88

exp(β1+β2) 0.52 x 1.36=0.71

exp(β1) 0.52

exp(β1+β3) 0.52 x 0.88=0.46

exp(β2)               1.14

1.0 (ref)

exp(β3) 0.81

exp(β1+β2+β4) 0.41 x 1.14 x 1.60=0.75

exp(β1) 0.41

exp(β1+β3+β5) 0.41 x 0.81 x 1.26=0.42

Main effects model Interaction model
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Testing for interaction using Stata

• A test of interaction is simply to test if the excess (1.26 and 1.60) is equal to
1 (or 0 on the log scale).

. poisson chd i.hieng i.job i.hieng##i.job, e(y) irr

------------------------------------------------

chd | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------

1.hieng | .4102648 .2512349 -1.45 0.146 .1235412 1.362438

|

job |

2 | 1.136857 .5684285 0.26 0.798 .4266828 3.029051

3 | .813427 .3712769 -0.45 0.651 .3325064 1.989927

|

hieng#job |

1 2 | 1.596755 1.303745 0.57 0.567 .3222813 7.911183

1 3 | 1.261973 .9638479 0.30 0.761 .2824452 5.638532

|

_cons | .0144648 .0051141 -11.98 0.000 .0072338 .028924
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. testparm 1.hieng#2.job 1.hieng#3.job

chi2( 2) = 0.33

Prob > chi2 = 0.8475

• No evidence of a statistically significant interaction.

• This is a so-called Wald test, which approximates the likelihood ratio test.
We could also use a likelihood ratio test, where we compare the
log-likelihoods from the main effects model and the interaction model.
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Reparameterising the model to directly estimate the effect
of exposure in each stratum

• We are often interested in the effect of the exposure (comparison between
high and low energy intake) for each level of the modifier (job).

• We can divide the rates with different reference rates to obtain the effect of
high energy in each level of job.

job hieng=0 hieng=1

1=driv exp(β0)/ exp(β0) = 1 exp(β0 + β1)/ exp(β0) = exp(β1)

2=cond exp(β0 + β2)/ exp(β0 + β2) = 1 exp(β0 + β1 + β2 + β4)/ exp(β0 + β2) = exp(β1 + β4)

3=bank exp(β0 + β3)/ exp(β0 + β3) = 1 exp(β0 + β1 + β3 + β5)/ exp(β0 + β3) = exp(β1 + β5)
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• This yields the following IRRs:

job hieng=0 hieng=1
driv 1.0 exp(β1)

cond 1.0 exp(β1 + β4)

bank 1.0 exp(β1 + β5)

• We can reparameterise the model in Stata to directly estimate parameters of
high energy, one for each job level.
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How to make Stata produce stratified effects

• Instead of just one baseline rate, you need three baseline rates, λ (one for
each job level). In addition, for each job level, you need an IRR for the energy
effect (three rate ratios).

. poisson chd ibn.job i.hieng#i.job, e(y) irr nocons

chd | IRR [95% Conf. Interval]

-------------+----------------------------------

job |

1 | .0144648 .0072338 .028924

2 | .0164445 .0082238 .0328825

3 | .0117661 .0066821 .0207183

|

hieng#job |

1 1 | .4102648 .1235412 1.362438

1 2 | .6550924 .2273009 1.888008

1 3 | .5177431 .211639 1.266581
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• Note that this is the same model; there are still 6 parameters and the fitted
rates are identical. It’s just that the 6 parameters in this model have a
different interpretation.

• The log-likelihood for this model is the same as the previous interaction
model. This is because we are fitting the exact same model, but with
different parameterisation.

• Technical note: The ibn. factor-variable operator specifies that a categorical
variable should be treated as if it has no base, or, in other words, that all
levels of the categorical variable are to be included in the model.
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Effects of exposure within each stratum of the modifier

• If we insert the Stata output in our previous table, we get

job hieng=0 hieng=1
driv 1.0 0.41

cond 1.0 0.66

bank 1.0 0.52

• The stratum-specific IRRs are similar, there is no evidence of interaction.

• Effect of being high vs low energy is 0.41 for drivers, 0.41x1.60=0.66 for
conductors, and 0.41x1.26=0.52 for bankers.

• Compare this to the main effects model: 0.52 for all occupation levels.
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• Similarly, we can reparameterise the models to show effect of job in levels of
energy.

• This yields the following IRRs

job hieng=0 hieng=1
driv 1.0 1.0

cond exp(β2) exp(β2 + β4)

bank exp(β3) exp(β3 + β5)
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. poisson chd ibn.hieng i.job#i.hieng, e(y) irr nocons

chd | IRR [95% Conf. Interval]

-------------+----------------------------------

hieng |

0 | .0144648 .0072338 .028924

1 | .0059344 .0022273 .0158117

|

job#hieng |

2 0 | 1.136857 .4266828 3.029051

2 1 | 1.815282 .5122665 6.432687

3 0 | .813427 .3325064 1.989927

3 1 | 1.026523 .3091123 3.408953

• If we insert the Stata output in our previous table, we get
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job hieng=0 hieng=1
driv 1.0 1.0

cond 1.14 1.82

bank 0.81 1.03

• Effect of being conductor vs driver is 1.14 for the low energy intake group,
whereas it is 1.82 for the high energy group.

• Compare this to the main effects model: 1.36 for all energy intake levels.

• Effect of being banker vs driver is 0.81 for the low energy intake group,
whereas it is 1.03 for the high energy group.

• Compare this to the main effects model: 0.88 for all energy intake levels.
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Linear combinations of parameters

• As an alternative to reparameterising the interaction model we can use the
Stata lincom() command to estimate the effect of exposure within each
level of the modifier together with confidence intervals. Here again is the
interaction model with the default parameterisation.

.poisson chd i.hieng##i.job, exp(y) irr

chd | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.hieng | .4102648 .2512349 -1.45 0.146 .1235412 1.362438

|

job |

2 | 1.136857 .5684285 0.26 0.798 .4266828 3.029051

3 | .813427 .3712769 -0.45 0.651 .3325064 1.989927

|

hieng#job |

1 2 | 1.596755 1.303745 0.57 0.567 .3222813 7.911183

1 3 | 1.261973 .9638479 0.30 0.761 .2824452 5.638532

|

_cons | .0144648 .0051141 -11.98 0.000 .0072338 .028924

------------------------------------------------------------------------------
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• The effect of hieng for job=1 is 0.41. We now estimate the effect of hieng
for the other two categories of job.

. lincom 1.hieng + 1.hieng#2.job, irr

---------------------------------------------------------------------

chd | IRR Std. Err. z P>|z| [95% Conf. Interval]

----+----------------------------------------------------------------

(1) | .6550924 .3537903 -0.78 0.434 .2273009 1.888008

---------------------------------------------------------------------

. lincom 1.hieng + 1.hieng#3.job, irr

---------------------------------------------------------------------

chd | IRR Std. Err. z P>|z| [95% Conf. Interval]

----+----------------------------------------------------------------

(1) | .5177431 .2363163 -1.44 0.149 .211639 1.266581

---------------------------------------------------------------------

• The calculation 0.410× 1.596 = 0.655 isn’t difficult but calculating the
standard error and CI is non-trivial (a combination of variances and
covariances). Lincom is useful for obtaining CI’s.
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Review: Parameterisations of the interaction model

• Interaction models can be parameterised in different ways to show effects
using different reference groups.

• Interaction models measure deviations from the hypothesis of main effect of
hieng in all job categories.

• Interactions are symmetrical, meaning that we can choose either variable job
or hieng as the effect modifier of the other. The test for interaction will be
the same regardless of parameterisation.

• If we wish to change reference group, simply divide the cells with
corresponding reference group.

• E.g. if we wish to tabulate the IRR, using the drivers with low energy intake
as reference group, then we simply divided all cells with the rate for drivers
with low energy intake.
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How the two parameterisations are related

job hieng=0 hieng=1
1=driv exp(β0) = exp(γ0) exp(β0 + β1) = exp(γ0 + γ3)

2=cond exp(β0 + β2) = exp(γ1) exp(β0 + β1 + β2 + β4) = exp(γ0 + γ4)

3=bank exp(β0 + β3) = exp(γ2) exp(β0 + β1 + β3 + β5) = exp(γ0 + γ5)

• The model is ln(λ) =
γ0driv + γ1cond + γ2bank + γ3hieng x driv + γ4hieng x cond + γ5hieng x bank
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