BIOSTAT III: Survival Analysis for Epidemiologists: Take-home examination

Therese Andersson

7-16 February, 2022

Instructions

- The examination is individual-based: you are not allowed to cooperate with anyone, although you are encouraged to consult the available literature. The examiner will use Urkund in order to assess potential plagiarism.
- The examination will be made available by noon on Wednesday 16 February 2022 and the examination is due by 17:00 on Wednesday 23 February 2022.
- The examination will be graded and results returned to you by Wednesday 2 March 2022.
- The examination is in two parts. To pass the examination, you need to score at least $7 / 13$ for Part 1 focused on rates and general regression modelling and 10/19 for Part 2 on survival analysis.
- Do not write answers by hand: please use Word, $\mathrm{A}_{\mathrm{A}} \mathrm{T} \mathrm{X}$, Markdown or a similar format for your examination report and submit the report as a PDF file.
- Motivate all answers in your examination report. Define any notation that you use for equations. The examination report should be written in English.
- Email the examination report containing the answers as a PDF file to gunilla.nilsson.roos@ki.se. Write your name in the email, but do NOT write your name or otherwise reveal your identity in the document containing the answers.

1 Description of the data

In this exam, we will use the melanoma data presented in the course. We will specifically focus on the variable stage at diagnosis as the exposure of interest. A few extra variabes have also been created that are not included in the dataset used for the computer lab. Below is a description of the variables used in this exam, and output from stset with time since diagnosis as the time-scale and death due to melanoma as the outcome.

```
. codebook agegrp sex stage d y
```

```
agegrp
Age in 4 categories
```

Type: Numeric (byte)		
Label: agegrp		
Range: $[0,3]$		Units: 1

sex Sex
\qquad
Label: sex
Range: [1,2] Units: 1
Unique values: 2 Missing .: 0/6,144
Tabulation: Freq. Numeric Label
2,921 1 Male
3,223 2 Female
stage Clinical stage at diagnosis
. Numeric (byte)
Label: stage
Range: [1,3]
Units: 1
Unique values: 3
Missing .: 0/6,144
Tabulation: Freq. Numeric Label
5,318 1 Localised
$350 \quad 2$ Regional
4763 Distant
d Indicator for death due to melanoma, $1=y e s, 0=$ no

```
                    Type: Numeric (float)
```

Range: [0,1]
Unique values: 2

Units: 1
Missing .: 0/6,144

```
Tabulation: Freq. Value
4,505 0
1,639 1
```

```
y
```

y
Follow-up time in exact years (\#days/365.24)
Follow-up time in exact years (\#days/365.24)
y (\#,

```
Percentiles: \(10 \% \quad 25 \% \quad 50 \% \quad 75 \% \quad 90 \%\)
\begin{tabular}{lllll}
1.21016 & 2.29438 & 5.29241 & 9.96057 & 14.626
\end{tabular}
```

 Type: Numeric (float)
    ```
                    Type: Numeric (float)
                    Range: [.04380681,20.961559]
                    Range: [.04380681,20.961559]
                            N: 1.000e-09
                            N: 1.000e-09
        Unique values: 374
        Unique values: 374
                                    Missing .: 0/6,144
                                    Missing .: 0/6,144
                    Mean: 6.67482
                    Mean: 6.67482
            Std. dev.: 5.18155
            Std. dev.: 5.18155
. stset y, fail(d==1) exit(time 10)
. stset y, fail(d==1) exit(time 10)
Survival-time data settings
Survival-time data settings
    Failure event: d==1
    Failure event: d==1
Observed time interval: (0, y]
Observed time interval: (0, y]
    Exit on or before: time 10
    Exit on or before: time 10
    6,144 total observations
    6,144 total observations
        0 exclusions
        0 exclusions
    6,144 observations remaining, representing
    6,144 observations remaining, representing
    1,579 failures in single-record/single-failure data
    1,579 failures in single-record/single-failure data
34,501.826 total analysis time at risk and under observation
34,501.826 total analysis time at risk and under observation
                                    At risk from t = 0
                                    At risk from t = 0
Earliest observed entry t = 0
Earliest observed entry t = 0
Last observed exit t = 10
```

Last observed exit t = 10

```

\section*{Part 1}

\section*{Q 1}

Below is the output from a Poisson model with death due to melanoma as the outcome and stage at diagnosis, age group at diagnosis and sex as explanatory variables.
```

. poisson d i.stage i.agegrp i.sex, exp(y)
Iteration 0: log likelihood = -4937.8056
Iteration 1: log likelihood = -4873.8427
Iteration 2: log likelihood = -4873.8115
Iteration 3: log likelihood = -4873.8115

```
\begin{tabular}{ll} 
Poisson regression & Number of obs \(=6,144\) \\
& LR chi2 \((6)\) \\
& \(=1954.56\) \\
Log likelihood \(=-4873.8115\) & Prob \(>\) chi2 \(=0.0000\) \\
& Pseudo R2 \(=0.1670\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline d & Coefficient & Std. err. & z & \(\mathrm{P}>|z|\) & [95\% conf & interval] \\
\hline \multicolumn{7}{|l|}{stage |} \\
\hline Regional & 1.624063 & . 0751158 & 21.62 & 0.000 & 1.476838 & 1.771287 \\
\hline Distant & 2.714714 & . 0597173 & 45.46 & 0.000 & 2.597671 & 2.831758 \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{agegrp |} \\
\hline 45-59 & . 3167896 & . 0713925 & 4.44 & 0.000 & . 1768628 & . 4567163 \\
\hline 60-74 & . 6203415 & . 0692078 & 8.96 & 0.000 & . 4846967 & . 7559864 \\
\hline 75+ & 1.124549 & . 0812141 & 13.85 & 0.000 & . 9653721 & 1.283725 \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{sex} \\
\hline Female & -. 3913987 & . 0510349 & -7.67 & 0.000 & -. 4914253 & -. 2913722 \\
\hline _cons & -3.839195 & . 0616421 & -62.28 & 0.000 & -3.960012 & -3.718379 \\
\hline \(\ln (\mathrm{y})\) & 1 & (exposure) & & & & \\
\hline
\end{tabular}
. est store A
a) Interpret the parameter for stage 'Distant' in the output above, including a statement about statistical significance. (2 pt)
b) What is the hazard ratio comparing a male patient with stage 'Regional' and diagnosed aged 45-59 to a male patient with stage 'Localised' and diagnosed aged 45-59? (2 pt)
c) Write out the model formulation (linear predictor) for the model above, make sure to explain your notation. (1 pt)
d) Based on the output given so far, is it possible to judge if age is a counfounder? If yes, is age a confounder (motivate your answer)? If no, why is it not possible to judge if age is a confounder based on the output above? (2 pt)

\section*{Q 2}

A second Poisson model is fitted, including interaction terms between stage and age group. The model is also compared with the model fitted in Q1 using a likelihood-ratio test.
```

. poisson d i.stage\#\#i.agegrp i.sex, exp(y)
Iteration 0: log likelihood = -4929.6279
Iteration 1: log likelihood = -4864.1635
Iteration 2: log likelihood = -4864.1134
Iteration 3: log likelihood = -4864.1134

```
\begin{tabular}{ll} 
Poisson regression & Number of obs
\end{tabular}\(=6,144\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{d | Coefficient} & Std. err. & z & \(\mathrm{P}>|\mathrm{z}|\) & \multicolumn{2}{|l|}{[95\% conf. interval]} \\
\hline \multicolumn{7}{|l|}{stage |} \\
\hline Regional | & 1.559185 & . 1645764 & 9.47 & 0.000 & 1.236622 & 1.881749 \\
\hline Distant | & 2.971941 & . 1328707 & 22.37 & 0.000 & 2.711519 & 3.232362 \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{agegrp} \\
\hline 45-59 & . 2913583 & . 0903633 & 3.22 & 0.001 & . 1142495 & . 468467 \\
\hline 60-74 & . 6767628 & . 0872528 & 7.76 & 0.000 & . 5057504 & . 8477752 \\
\hline 75+ | & 1.319568 & . 100775 & 13.09 & 0.000 & 1.122052 & 1.517083 \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{stage\#agegrp |} \\
\hline \multicolumn{7}{|l|}{Regional \#|} \\
\hline 45-59 | & . 3387383 & . 2129007 & 1.59 & 0.112 & -. 0785395 & . 756016 \\
\hline \multicolumn{7}{|l|}{Regional \#|} \\
\hline 60-74 | & -. 003056 & . 2089844 & -0.01 & 0.988 & -. 4126579 & . 4065459 \\
\hline \multicolumn{7}{|l|}{Regional \#|} \\
\hline 75+ | & -. 1707681 & . 2508509 & -0.68 & 0.496 & -. 6624269 & . 3208907 \\
\hline \multicolumn{7}{|l|}{Distant \#|} \\
\hline 45-59 | & -. 1167497 & . 1716509 & -0.68 & 0.496 & -. 4531793 & . 21968 \\
\hline \multicolumn{7}{|l|}{Distant \#|} \\
\hline 60-74 | & -. 2697977 & . 1660084 & -1.63 & 0.104 & - . 5951681 & . 0555727 \\
\hline Distant\#75+ | & -. 6893975 & . 1930808 & -3.57 & 0.000 & -1.067829 & -. 3109661 \\
\hline | & & & & & & \\
\hline \multicolumn{7}{|l|}{sex} \\
\hline Female | & -. 3836771 & . 0513641 & -7.47 & 0.000 & -. 4843488 & -. 2830053 \\
\hline _cons | & -3.886467 & . 0727479 & -53.42 & 0.000 & -4.02905 & -3.743883 \\
\hline \(\ln (\mathrm{y})\) | & 1 & (exposure) & & & & \\
\hline
\end{tabular}
. lrtest A

Likelihood-ratio test
Assumption: A nested within .
LR chi2 (6) = 19.40
Prob > chi2 \(=0.0035\)
a) Interpret the parameter for stage 'Distant' in the output above, including a statement about statistical significance. (2 pt)
b) What is the hazard ratio comparing a male patient with stage 'Regional' and diagnosed aged 45-59 to a male patient with stage 'Localised' and diagnosed aged 45-59? (2 pt)
c) Based on the output given so far, is it possible to judge if there is effect modification by age? If yes, is there effect modification by age (motivate your answer)? If no, why is it not possible to judge if there is effect modification by age based on the output given? (2 pt)

\section*{Part 2}

\section*{Q 3}

Here is a Kaplan-Meier graph of the survivor function for the 3 stages, and the output from a log rank test.

. sts test stage
```

 Failure _d: d==1
 Analysis time _t: y
 Exit on or before: time 10
    ```
Equality of survivor functions
Log-rank test

a) Based on the Kaplan-Meier graph, what is the 2-year survival for each of the 3 stages (approximately)? (2 pt)
b) Based on the Kaplan-Meier graph, what can you conclude about the hazard rate of death due to melanoma over time since diagnosis for the 3 stages? ( 3 pt )
c) Based on the log-rank test, would you conclude that there is evidence of a difference in the cancer-specific mortality across stage? (1 pt)
d) Why is it better to answer the question above using a regression model instead of a log-rank test? (2 pt)

\section*{Q 4}

Below is the output from a Cox model, and test of the proportional hazards assumption based on the Schoenfelds residuals from this model.
```

. stcox i.stage i.agegrp i.sex
Failure _d: d==1
Analysis time _t: y
Exit on or before: time 10
Iteration 0: log likelihood = -13255.772
Iteration 1: log likelihood = -12847.163
Iteration 2: log likelihood = -12441.542
Iteration 3: log likelihood = -12425.274
Iteration 4: log likelihood = -12425.085
Iteration 5: log likelihood = -12425.085
Refining estimates:
Iteration 0: log likelihood = -12425.085
Cox regression with Breslow method for ties

No. of subjects $=$	6,144	Number of obs $=6,144$
No. of failures $=$	1,579	
Time at risk $=34,501.8262$		
		LR chi2 (6)
Log likelihood $=-12425.085$	Prob $>$ chi2	$=1661.37$

_t | Haz. ratio Std. err. z P>|z| [95% conf. interval]

stage \|						
Regional	4.804584	.3672603	20.53	0.000	4.136093	5.581119
Distant	13.76562	.8547612	42.23	0.000	12.18825	15.54713
agegrp \|						
$45-59$	1.292545	.0949067	3.49	0.000	1.119296	1.492609
$60-74$	1.63115	.1163425	6.86	0.000	1.418344	1.875885
$75+$	2.39279	.1989125	10.50	0.000	2.033032	2.816209
sex \|						
Female \|	.7050403	.0368063	-6.69	0.000	.6364691	.7809991

```
```

. estat phtest, detail

```
Test of proportional-hazards assumption
Time function: Analysis time
\begin{tabular}{|c|c|c|c|c|}
\hline & rho & chi2 & df & Prob>chi2 \\
\hline 1b.stage & & & 1 & \\
\hline 2. stage & -0.12321 & 23.52 & 1 & 0.0000 \\
\hline 3. stage & -0.25235 & 87.42 & 1 & 0.0000 \\
\hline 0b.agegrp & & & 1 & \\
\hline 1. agegrp & 0.00148 & 0.00 & 1 & 0.9529 \\
\hline 2. agegrp & -0.00537 & 0.05 & 1 & 0.8309 \\
\hline 3. agegrp & -0.01403 & 0.31 & 1 & 0.5769 \\
\hline 1b.sex & & & 1 & \\
\hline 2.sex & -0.01923 & 0.60 & 1 & 0.4391 \\
\hline Global test & & 96.17 & 6 & 0.0000 \\
\hline
\end{tabular}
a) Is this model equivalent to the Poisson model in question 1 (Q1)? Motivate your answer. If not, how could they the Poisson model be made more similar to the Cox model? (2 pt)
b) What is the hazard ratio comparing Regional stage to Localised stage for patients aged \(75+\) at diagnosis? (2 pt)
c) Write out the model formulation (linear predictor) of the model. (2 pt)
d) Is there evidence of non-proportional hazards for the covariate of interest, stage? (1 pt)

\section*{Q 5}
a) Descibe a study where you would choose attained age as the time-scale. Motivate your answer. (2pt)
b) Describe two approaches for allowing for non-proportional hazards. (2 pt)```

