# BIOSTAT III: Survival Analysis for Epidemiologists: Take-home examination 

Therese Andersson

8-17 February, 2021

## Instructions

- The examination is individual-based: you are not allowed to cooperate with anyone, although you are encouraged to consult the available literature. The examiner will use Urkund in order to assess potential plagiarism.
- The examination will be made available by noon on Wednesday 17 February 2021 and the examination is due by 17:00 on Wednesday 24 February 2021.
- The examination will be graded and results returned to you by Wednesday 3 March 2021.
- The examination is in two parts. To pass the examination, you need to score at least 7/13 for Part 1 focused on rates and general regression modelling and 11/21 for Part 2 on survival analysis.
- Do not write answers by hand: please use Word, $\mathrm{A}_{\mathrm{A}} \mathrm{T} \mathrm{X}$, Markdown or a similar format for your examination report and submit the report as a PDF file.
- Motivate all answers in your examination report. Define any notation that you use for equations. The examination report should be written in English.
- Email the examination report containing the answers as a PDF file to gunilla.nilsson.roos@ki.se Write your name in the email, but do NOT write your name or otherwise reveal your identity in the document containing the answers.


## 1 Description of the data

In this exam, we will use the colon cancer data presented in the course. We will specifically focus on the variable subsite as the exposure of interest (this variable has not been given a lot of focus during the course). It gives information about in which part of the colon the tumour was detected and has 4 levels, 'Coecum and ascending', 'Transverse', 'Descending and sigmoid', and 'Other and not otherwise specified (NOS)'. A few extra variabes have also been created that are not included in the dataset used for the computer lab. Below is a description of the variables used in this exam, and output from stset with time since diagnosis as the time-scale and death due to colon cancer as the outcome.

```
agegrp
```

    type: numeric (byte)
    label: agegrp

```
\begin{tabular}{rlrl} 
range: & {\([0,3]\)} & & \\
unique values: & 4 & & \\
& & & \\
tabulation: & Freq. & Numeric & Label \\
& 652 & 0 & \(0-44\) \\
& 2,106 & 1 & \(45-59\) \\
& 5,735 & 2 & \(60-74\) \\
& 4,715 & 3 & \(75+\)
\end{tabular}
units: 1
missing .: 0/13,208
```

    type: numeric (byte)
    label: year8594
            range: [0,1] units: 1
        unique values: 2
            tabulation: Freq. Numeric Label
            5,434 0 Diagnosed 75-84
            7,774 1 Diagnosed 85-94
    ```
                        missing .: 0/13,208
sex
```

    type: numeric (byte)
    label: sex
    range: [1,2] units: 1
        unique values: 2 missing .: 0/13,208
        tabulation: Freq. Numeric Label
            5,455 1 Male
            7,753 2 Female
    ```
```

subsite

| type: <br> label: | numeric (byte) colonsub |  |
| :---: | :---: | :---: |
| range: | [1,4] | units: 1 |
| unique values: | 4 | missing .: 0/13,208 |
| tabulation: | Freq. Numeric | Label |
|  | 4,820 1 | Coecum and ascending |
|  | 2,365 2 | Transverse |
|  | 5,391 3 | Descending and sigmoid |
|  | 6324 | Other and NOS |

```
                        type: numeric (byte)
                            label: stage
            range: [1,3] units: 1
        unique values: 3
                                missing .: 0/13,208
        tabulation: Freq. Numeric Label
        6,274 1 Localised
        1,787 2 Regional
        5,147 3 Distant
d
                                    Indicator for death due to colon cancer, 1=yes, 0=no
\begin{tabular}{rlllll} 
type: & numeric (float) & & & \\
range: & [.04380681,20.961559] & \begin{tabular}{r} 
units:
\end{tabular} & \begin{tabular}{l}
\(1.000 \mathrm{e}-09\) \\
missing.\(:\) \\
\(0 / 13,208\)
\end{tabular} \\
unique values: & 439 & & & & \\
mean: & 3.76028 & & & & \\
std. dev: & 4.4187 & & & & \\
& & \(10 \%\) & \(25 \%\) & \(50 \%\) & \(75 \%\)
\end{tabular}
```

```
. stset y, fail(d==1) exit(time 10)
```

. stset y, fail(d==1) exit(time 10)
failure event: d == 1
obs. time interval: (0, y]
exit on or before: time 10
13,208 total observations
O exclusions
13,208 observations remaining, representing
7,122 failures in single-record/single-failure data
43,966.874 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 10

```

\section*{Part 1}

\section*{Q 1}

Below is the output from a Poisson model with colon cancer death as the outcome and subsite and age group at diagnosis as explanatory variables.
```

. poisson d i.subsite i.agegrp, exp(y)
Iteration 0: log likelihood = -23913.572
Iteration 1: log likelihood = -23913.443
Iteration 2: log likelihood = -23913.443

```
\begin{tabular}{llll} 
Poisson regression & Number of obs & \(=\) & 13,208 \\
& LR chi2(6) & \(=\) & 759.97 \\
& Prob \(>\) chi2 & \(=\) & 0.0000 \\
Log likelihood \(=-23913.443\) & Pseudo R2 & \(=\) & 0.0156
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline d & Coef & Std. Err. & z & \(P>|z|\) & [95\% Con & Interval] \\
\hline \multicolumn{7}{|l|}{subsite |} \\
\hline Transverse & . 2477318 & . 0333812 & 7.42 & 0.000 & . 1823057 & . 3131578 \\
\hline Descending and sigmoid & . 0171663 & . 0272406 & 0.63 & 0.529 & -. 0362244 & . 0705569 \\
\hline Other and NOS & . 1345189 & . 0572765 & 2.35 & 0.019 & . 022259 & . 2467788 \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{agegrp |} \\
\hline 45-59 & . 1326942 & . 0638993 & 2.08 & 0.038 & . 0074539 & . 2579345 \\
\hline 60-74 & . 4641152 & . 0586528 & 7.91 & 0.000 & . 3491579 & . 5790725 \\
\hline \multicolumn{7}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l|lllllll}
\(75+\) & .9398427 & .0589442 & 15.94 & 0.000 & .8243141 & 1.055371
\end{tabular}}} \\
\hline & & & & & & \\
\hline _cons & -2.518287 & . 0577151 & -43.63 & 0.000 & -2.631406 & -2.405167 \\
\hline \(\ln (\mathrm{y})\) & 1 & (exposure) & & & & \\
\hline
\end{tabular}
est store A
a) Interpret the parameter for subsite 'Transverse' in the output above, including a statement about statistical significance. (2 pt)
b) Interpret the parameter for subsite 'Descending and sigmoid' in the output above, including a statement about statistical significance. (2 pt)
c) What is the hazard ratio comparing a patient with subsite 'Transverse' and diagnosed aged 45-59 to a patient with subsite 'Coecum and ascending' and diagnosed in the youngest age group? (2 pt)
d) In this example, subsite is the exposure. We know that the distribution of age differs across subsites, and it is also known that colon cancer-specific mortality differs by age. Will this be a problem when you interpret the effect of subsite in the output above? Motivate your answer. (2 pt)

\section*{Q 2}

A second Poisson model is fitted, including interaction terms between subsite and age group. The model is also compared with the model fitted in Q1 using a likelihood-ratio test.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Iteration 0: \(\quad\) log likelihood \(=-23889.634\)} \\
\hline \multicolumn{7}{|l|}{Iteration 1: log likelihood \(=-23889.332\)} \\
\hline \multicolumn{7}{|l|}{Iteration 2: \(\quad\) log likelihood \(=-23889.332\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Poisson regression}} & \multicolumn{2}{|l|}{Number of obs} & = & \multicolumn{2}{|l|}{13,208} \\
\hline & & \multicolumn{2}{|l|}{LR chi2(15)} & = & \multicolumn{2}{|l|}{808.19} \\
\hline & & Prob > & chi2 & = & 0.0000 & \\
\hline \multicolumn{2}{|l|}{Log likelihood \(=-23889.332\)} & \multicolumn{2}{|l|}{Pseudo R2} & = & \multicolumn{2}{|l|}{0.0166} \\
\hline d & Coef. & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & [95\% Con & Interval] \\
\hline \multicolumn{7}{|l|}{subsite |} \\
\hline Transverse & . 5488913 & . 1544657 & 3.55 & 0.000 & . 2461441 & . 8516385 \\
\hline Descending and sigmoid & . 6811782 & . 1331186 & 5.12 & 0.000 & . 4202706 & . 9420859 \\
\hline Other and NOS & -. 0742398 & . 2957184 & -0.25 & 0.802 & -. 6538373 & . 5053576 \\
\hline \multicolumn{7}{|l|}{agegrp} \\
\hline 45-59 & . 5470006 & . 1164724 & 4.70 & 0.000 & . 3187188 & . 7752824 \\
\hline 60-74 & . 7903322 & . 1070393 & 7.38 & 0.000 & . 5805391 & 1.000125 \\
\hline 75+ & 1.216963 & . 1070192 & 11.37 & 0.000 & 1.007209 & 1.426716 \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{subsite\#agegrp} \\
\hline Transverse\#45-59 & -. 5168524 & . 1779356 & -2.90 & 0.004 & -. 8655997 & -. 168105 \\
\hline Transverse\#60-74 & -. 3242193 & . 1629553 & -1.99 & 0.047 & -. 6436058 & -. 0048329 \\
\hline Transverse\#75+ & -. 2336096 & . 1632869 & -1.43 & 0.153 & -. 553646 & . 0864268 \\
\hline Descending and sigmoid\#45-59 & -. 7688978 & . 1514086 & -5.08 & 0.000 & -1.065653 & -. 4721424 \\
\hline Descending and sigmoid\#60-74 & -. 7094681 & . 1393483 & -5.09 & 0.000 & -. 9825857 & -. 4363505 \\
\hline Descending and sigmoid\#75+ & -. 6571303 & . 1402717 & -4.68 & 0.000 & -. 9320578 & -. 3822029 \\
\hline Other and NOS\#45-59 & -. 2616855 & . 3438992 & -0.76 & 0.447 & -. 9357156 & . 4123446 \\
\hline Other and NOS\#60-74 & . 1961377 & . 3089865 & 0.63 & 0.526 & -. 4094648 & . 8017402 \\
\hline \multirow[t]{2}{*}{Other and NOS\#75+} & . 3896897 & . 307874 & 1.27 & 0.206 & -. 2137323 & . 9931117 \\
\hline & & & & & & \\
\hline _cons & -2.820275 & . 1025978 & -27.49 & 0.000 & -3.021363 & -2.619187 \\
\hline \(\ln (\mathrm{y})\) & 1 & \multicolumn{2}{|l|}{(exposure)} & & & \\
\hline
\end{tabular}
```

lrtest A

```
Likelihood-ratio test \(\quad\) LR chi2 (9) \(=48.22\)
a) What is the hazard ratio when comparing subsite 'Transverse' to 'Coecum and ascending' among patients diagnosed in the youngest age group. (2 pt)
b) What is the hazard ratio when comparing subsite 'Transverse' to 'Coecum and ascending' among patients diagnosed in the ages 60-74? (2 pt)
c) Is there evidence of effect modification by age? Motivate your answer. (1 pt)

\section*{Part 2}

\section*{Q 3}

Here is a Kaplan-Meier graph of the survivor function for the 4 subsites, and the output from a log rank test.

sts test subsite
failure _d: d == 1
analysis time _t: y
exit on or before: time 10

Log-rank test for equality of survivor functions
\begin{tabular}{|c|c|c|}
\hline subsite & \begin{tabular}{l}
Events \\
observed
\end{tabular} & Events expected \\
\hline Coecum and ascending & 2557 & 2605.52 \\
\hline Transverse & 1374 & 1180.68 \\
\hline Descending and sigmoid & 2850 & 3021.69 \\
\hline Other and NOS & 341 & 314.12 \\
\hline Total & 7122 & 7122.00 \\
\hline & chi2(3) = & 45.86 \\
\hline & Pr>chi2 = & 0.0000 \\
\hline
\end{tabular}
a) Based on the Kaplan-Meier graph, what is the 1 -year survival for each of the 4 subsites (approximately)? (2 pt)
b) Based on the Kaplan-Meier graph, what can you conclude about the hazard rate of death due to colon cancer for the 4 subsites? ( 3 pt )
c) Would you say that the proportional hazards assumption is reasonable? Motivate your answer. (2 pt)
d) Would you conclude that there is evidence of a difference in the cancer-specific mortality across subsites? ( 1 pt )
e) Why is it better to answer the question above using a regression model instead of a log-rank test? (2 pt)

\section*{Q 4}

Below is the output from a Cox model, and test of the proportional hazards assumption based on the Schoenfelds residuals from this model.
```

. stcox i.subsite i.agegrp
failure _d: d == 1
analysis time _t: y
exit on or before: time 10
Iteration 0: log likelihood = -64476.566
Iteration 1: log likelihood = -64358.24
Iteration 2: log likelihood = -64357.746
Iteration 3: log likelihood = -64357.746
Refining estimates:
Iteration 0: log likelihood = -64357.746
Cox regression -- Breslow method for ties

| No. of subjects $=$ | 13,208 | Number of obs | $=$ | 13,208 |
| :--- | ---: | :--- | ---: | :--- |
| No. of failures $=$ | 7,122 |  |  |  |
| Time at risk | $=43966.87383$ |  | LR chi2 (6) | $=$ |
|  |  | Prob $>$ chi2 | $=$ | 237.64 |
| Log likelihood $=$ | -64357.746 |  |  |  |

```

```

. estat phtest, detail

```
    Test of proportional-hazards assumption
```

Time: Time

```
\begin{tabular}{|c|c|c|c|c|}
\hline & rho & chi2 & df & Prob>chi2 \\
\hline 1b.subsite & . & . & 1 & . \\
\hline 2.subsite & -0.02292 & 3.74 & 1 & 0.0530 \\
\hline 3. subsite & 0.06947 & 34.54 & 1 & 0.0000 \\
\hline 4.subsite & -0.04271 & 12.99 & 1 & 0.0003 \\
\hline Ob.agegrp & . & & 1 & \\
\hline 1.agegrp & -0.01304 & 1.21 & 1 & 0.2704 \\
\hline 2.agegrp & -0.00981 & 0.69 & 1 & 0.4071 \\
\hline 3. agegrp & -0.03354 & 7.99 & 1 & 0.0047 \\
\hline global test & & 109.14 & 6 & 0.0000 \\
\hline
\end{tabular}
a) Is this model equivalent to the Poisson model in question 1 (Q1)? Motivate your answer. (2 pt)
b) What is the hazard ratio comparing subsite 'Other and NOS' to 'Coecum and ascending' for patients aged \(75+\) at diagnosis? ( 2 pt )
c) Write out the model formulation (linear predictor) of the model. (2 pt)
d) Is there evidence of non-proportional hazards for the covariate of interest, subsite? (1 pt)
e) Why would a stratified Cox model, stratifying by subsite, not be suitable in this study? (1 pt)

\section*{Q 5}
a) Descibe a study where you would choose attained age as the time-scale. Motivate your answer. (2pt)
b) Describe an approach (other than stratified Cox model) of allowing for non-proportional hazards. (1 pt)```

